


1. Introduction

Theoretical prediction of the behavior of ships and offshore structures in time-harmonic
ambient waves is one of the most important core issues in free-surface hydrodynamics. For
offshore structures, robust and highly-efficient panel methods have been developed, and are
routinely used, to solve the basic wave radiation-diffraction problems required to predict added-
mass and wave-damping coefficients, and wave-exciting forces and moments. These potential-
flow methods are based on numerical solution of a boundary-integral equation associated with
the Green function corresponding to the linear free-surface boundary condition for diffraction-
radiation of time-harmonic waves without forward speed. Application of this classical approach,
often identified as the free-surface Green function method, to wave diffraction-radiation by ships
(i.e. with forward speed) has also led to useful methods — see e.g. Boin et al. (2002,2000), Ba
et al. (2001), Chen et al. (2000), Guilbaud et al. (2000), Fang (2000), Wang et al. (1999), Du
et al. (2000,1999), Zhang and Eatock-Taylor (1999), Iwashita and Ito (1998), Iwashita (1997)
— although not to a comparable degree of practicality because forward speed introduces major
difficulties (not present for wave diffraction-radiation at zero forward speed).

A fundamental difficulty, mathematical in nature, is related to the fact that the boundary-
integral representation of time-harmonic (or steady) free-surface flows about ships (advancing
with forward speed U) involves a line integral along the ship waterline. This line integral (not
present if U = 0) has been shown to have important effects, see e.g. Ba et al. (2001) and Zhang
and Eatock-Taylor (1999). In particular, the contribution of the waterline integral is shown in
Ba et al. (2001) to have a large effect upon the occurrence of irregular frequencies. In addition,
the contribution of the waterline integral largely cancels out the contribution of the surface
integral over the ship hull. These numerical cancellations, numerically illustrated in Noblesse
and Yang (1995) and Noblesse et al. (2002), can result in serious losses of accuracy. The
numerical/mathematical difficulty associated with the waterline integral that occurs if U �= 0
is addressed in the present study, which reconsiders the fundamental problem of determining
the free-surface potential flow that corresponds to a given flow at the wetted hull surface of a
ship (or offshore structure).

A classical boundary-integral representation, based on one of Green’s fundamental identities,
defines the velocity potential at a field point inside a flow domain in terms of the potential φ
and its normal derivative ∂φ/∂n at the boundary surface. As already noted, the corresponding
classical boundary-integral representation of potential flow due to a ship advancing at constant
speed in time-harmonic waves (or in calm water) involves a line integral along the ship waterline;
see e.g. Brard (1972) . The waterline integral in this classical boundary-integral representation
of time-harmonic ship waves stems from a transformation, based on Stokes’ theorem, of the
integral over the mean free-surface plane in Green’s identity. Both the line integral along the
ship waterline and the surface integral over the ship wetted hull involve first derivatives of the
Green function G associated with the Michell free-surface boundary condition. Specifically,
the waterline integral involves the derivative Gx of G along the path of the ship, and the hull
integral involves ∇G . Numerical cancellations related to these complicated and highly-singular
functions can result in serious losses of accuracy, as already noted.

Here, an integration by parts is performed to transform the distribution of normal dipoles
over the boundary surface in the classical boundary-integral representation of the potential.
This transformation yields boundary-integral representations of potential flows that define the
potential in terms of a Green function G and related functions that are no more singular
than G . Thus, the boundary-integral representations of the potential given in this study are
weakly singular in comparison to the corresponding classical boundary-integral representations,
which define the potential φ in terms of G and ∇G . The illustrative numerical applications



presented in Noblesse et al. (2002) show that the numerical cancellations that occur between
the waterline integral and the hull integral in the classical boundary-integral representation
of steady ship waves are largely eliminated in the corresponding weakly-singular boundary-
integral representation, which may then be useful for numerical purposes.

2. Problem statement

Consider potential flow about a ship or other floating rigid body, e.g. an offshore structure,
at or below the free surface of a large body of water of uniform depth D . Let ΣB be a surface
located outside the viscous boundary layer that surrounds the ship hull. The surface ΣB

includes the outer edge of the viscous wake trailing the ship, or a surface outside the viscous
wake. If viscous effects are ignored, ΣB may be taken as the mean wetted ship hull. For a ship
equipped with lifting surfaces, e.g. a sailboat, ΣB also includes the two sides of every vortex
sheet behind the ship hull. For a multihull ship, the hull+wake surface ΣB consists of several
component surfaces, which correspond to the separate hull components of the ship and their
wakes.

The flow domain is bounded by the surface

Σ = ΣB ∪ Σ0 ∪ ΣD

where Σ0 is the portion of the mean free-surface plane Z=0 located outside the “body” surface
ΣB and ΣD is the sea floor Z=−D . Let Γ represent the intersection curve between the surfaces
ΣB and Σ0 , i.e. the intersection curve of the body surface ΣB with the free-surface plane. The
unit vector �n = (nx, ny, nz ) is normal to the boundary surface Σ and points into the flow
domain. Thus, �n = (0 , 0 ,−1) at the free surface Σ0 and �n = (0 , 0 , 1) at the sea floor ΣD . The
unit vector�t = ( tx, ty, 0 ) is tangent to the boundary curve Γ and oriented clockwise (looking
down).

Coordinates are nondimensional with respect to a reference length L , e.g. the ship length.
The nondimensional water depth is d=D/L . The fluid velocity is nondimensional with respect
to a characteristic reference velocity U , e.g. the ship speed U , and the velocity potential is
nondimensional with respect to the reference potential UL . The z axis is vertical and points
upward, and the mean free surface is taken as the plane z = 0 as already noted. For steady
and time-harmonic flow about a ship advancing in calm water or in waves, the x axis is chosen
along the path of the ship and points toward the ship bow.

Let�ξ = (ξ , η , ζ) and �x = (x , y , z) stand for a field point and a singularity point, respectively,
associated with a Green function G( �x ;�ξ). The field point�ξ lies inside the flow domain, and the
singularity point �x is located on the boundary surface Σ . Hereafter, φ∗ stands for the velocity
potential at a field point �ξ , and φ and �u = ∇φ represent the potential and the velocity at a
boundary point �x . Furthermore, ∇ and ∇∗ stand for the differential operators ∇= (∂x , ∂y , ∂z)
and ∇∗ = (∂ξ , ∂η , ∂ζ) .

The sea floor z=−d is assumed to be a rigid wall. Thus, the sea-floor boundary condition

w = 0 at z = −d (1a)

holds. Furthermore, Green functions G that satisfy the sea-floor boundary condition

Gz = 0 at z = −d (1b)

are considered here.



Define un and �Ω = ( Ωx, Ωy, Ωz) as

un = �u · �n �Ω = �u × �n = �uθ× �n with �uθ = �u − un �n (2a)

Thus, un represents the component of the velocity �u along the unit vector �n normal to the
boundary surface Σ and �uθ is the tangential component of �u . The expressions

�Ω =


Ωx = nzv − nyw

Ωy = nxw − nzu

Ωz = nyu − nxv

 �u θ =


u − unnx

v − unny

w − unnz

 (2b)

yield �Ω = (−v , u , 0) and �uθ = (u , v , 0) at the free-surface plane.

3. Classical representation of potential flows

The potential φ∗ at a field point�ξ within a flow domain is defined in terms of the boundary
values of the potential φ and its normal derivative ∇φ ·�n = �u ·�n = un by the classical boundary-
integral representation

φ∗ =
∫

Σ
dA (un G − φ �n ·∇G ) (3)

where dA stands for the differential element of area at a point �x of the boundary surface Σ .
This representation defines the potential in terms of boundary distributions of sources (with
strength un) and normal dipoles (with strength φ ), and involves a Green function G and first
derivatives of G . The velocity field �u∗ associated with the classical potential representation
(3) is given by

�u∗ =∇∗φ∗ =
∫

Σ
dA [un ∇∗G − φ ∇∗ (�n ·∇G ) ] (4)

This representation of the velocity involves second derivatives of G .

The classical boundary-integral representation (3) holds for a field point �ξ inside the flow
domain, strictly outside the boundary surface Σ . This property is related to the well-known
fact that the potential defined by the dipole distribution in (3) is not continuous at the surface
Σ . Indeed, (3) becomes

1
2
φ∗ =

∫
Σ
dA (un G − φ �n ·∇G )

at a point �ξ of the boundary surface Σ (if Σ is smooth at �ξ ).

4. Weakly-singular representations of potential flows

Consider the vector fields �g1 ,�g2 ,�g3 defined as
�g1 = ∇Gx ×�i = ( 0 , Gx

z ,−Gx
y )

�g2 = ∇G y ×�j = (−G y
z , 0 , G y

x )

�g3 = ∇G z × �k = (G z
y ,−G z

x , 0 )

 where


�i = (1 , 0 , 0)

�j = (0 , 1 , 0)

�k = (0 , 0 , 1)

 (5a)

and a subscript/superscript indicates differentiation/integration. These vector fields satisfy the
identity

∇×�g = ∇G (5b)

for a function G , e.g. a Green function, that satisfies the Laplace equation. The identity

∇× (φ�g ) = φ∇×�g + ∇φ ×�g



and the relation (5b) yield
∇× (φ�g ) = φ∇G − �g ×∇φ

Furthermore, the relations �u = ∇φ and �Ω = �u × �n yield

�n · [∇× (φ�g ) ] = φ �n ·∇G − �g · �Ω (5c)

Expressions (5) relate usual (scalar) Green functions G and corresponding vector Green func-
tions �g .

Integration of (5c) over the boundary surface Σ yields the three alternative transformations

∫
Σ
dA φ �n · ∇G =

∫
Σ
dA


∇Gx ×�i

∇G y ×�j

∇G z × �k

· �Ω =
∫

Σ
dA


Ωy Gx

z − Ωz Gx
y

Ωz G y
x − Ωx G y

z

Ωx G z
y − Ωy G z

x

 (6a)

The field point �ξ in (6a) is within the flow domain, strictly outside the boundary surface Σ .
The transformations (6a) express a surface integral involving the potential φ and the derivative
∇G of a Green function G as an integral that involves �Ω = ∇φ×�n and the functions ∇Gx,∇G y

or ∇G z, which are no more singular than G . Thus, the transformations (6a) correspond to an
integration by parts (φ ,∇G) → (∇φ ,G) . Differentiation of the transformations (6a) yields

∫
Σ
dA φ∇∗ (�n ·∇G ) =

∫
Σ
dA ∇∗


∇Gx ×�i

∇G y ×�j

∇G z × �k

· �Ω =
∫

Σ
dA ∇∗


Ωy Gx

z − Ωz Gx
y

Ωz G y
x − Ωx G y

z

Ωx G z
y − Ωy G z

x

 (6b)

with ∇∗ = (∂ξ , ∂η , ∂ζ) . An interesting special case of the family of three alternative transfor-
mations (6b) is obtained by differentiating the first, second and third of these transformations
with respect to ξ , η and ζ , respectively, i.e.

∫
Σ
dA φ


∂ξ (�n ·∇G )

∂η (�n ·∇G )

∂ζ (�n ·∇G )

 =
∫

Σ
dA


∇Gx

ξ ×�i

∇G y
η ×�j

∇G z
ζ × �k

· �Ω =
∫

Σ
dA �Ω ×∇∗G (6c)

for a Green function that satisfies the identity ∇∗G = −∇G .

By substituting the transformation (6c) into the classical representation (4) of the velocity,
we obtain

�u∗ =
∫

Σ
dA (un ∇∗G − �Ω ×∇∗G ) (7)

This weakly-singular representation of the velocity is well known; see e.g. Hunt (1980). Sub-
stitution of the transformation (6a) into the classical representation (3) of the potential yields

φ∗ =
∫

Σ
dA (un G −


Ωy Gx

z − Ωz Gx
y

Ωz G y
x − Ωx G y

z

Ωx G z
y − Ωy G z

x

) (8)

The representations of the velocity ∇∗φ∗ associated with the family of three alternative weakly-
singular representations (8) of φ∗ generalize the classical velocity representation (7). The three
alternative weakly-singular representations (8) of the potential, and the corresponding weakly-
singular representations of the velocity, are applied to steady ship waves in Noblesse et al.



(2002). The comparison of the steady farfield ship waves associated with the alternative flow
representations (8) given in that study indicates that the potential representation corresponding
to the vector field�g3 is more useful than the alternative representations associated with�g1 and
�g2 . Thus, hereafter we only consider the potential representation associated with �g3 , i.e.

φ∗ =
∫

Σ
dA (un G + Ωy G z

x − Ωx G z
y ) (9)

This boundary-integral representation is now considered in the simplest case when the Green
function G is taken as the basic free-space Green function.

5. Free-space Green function

Consider the basic (free-space) Green function given by 4πG = −1/r with

r =
√

�X · �X �X = (X,Y, Z ) = (x − ξ , y − η , z − ζ ) (10a)

The function (1/r) z and its derivatives with respect to ξ and η are given by

(1/r) z = sign(Z) ln( r + |Z | )
{

(1/r) z
x

(1/r) z
y

}
=

sign(Z)
r ( r + |Z | )

{
X

Y

}
(10b)

The corresponding vector Green function �g , defined by (5a) as �g = ∇(1/r) z × �k , can be
verified to satisfy the relation ∇×�g = ∇(1/r) in agreement with (5b).

By using (10b) in (9), we obtain

φ∗ =
−1
4π

∫
Σ

dA
r

(
un+ sign(δz)

Ωy δx− Ωx δy

1 + | δz |

)
with �δ =

�X

r
(11)

For purposes of verification, the potential representation (11) can be considered for a simple
case. E.g., the potential defined by the representation (11) — where the boundary surface Σ
is taken as a sphere and the velocity at Σ is that generated by a dipole at the center of the
sphere — can be verified to be identical to the potential of the flow due to the dipole, outside
and on the spherical boundary surface Σ .

Consider the representation (11) of the potential φ∗ = φ(�ξ) for a field point �ξ located on
the flow side of the boundary surface Σ . The surface Σ can be decomposed into a local region
Σε surrounding�ξ and the region Σ−Σε. If Σ is smooth at the point�ξ , the local region Σε may
be taken as a circular disk , with radius ε , centered at �ξ in the tangent plane to Σ at �ξ. The
contribution φ ε

∗ due to Σε is easily shown to be O(ε) and thus vanishes in the limit ε → 0 . It
follows that the weakly-singular representation (11) defines a potential φ∗ that is continuous at
the boundary surface Σ , unlike the classical boundary-integral representation (3). Specifically,
the transformations (6a), where the field point�ξ is within the flow domain (strictly outside the
boundary surface Σ), also hold for a point �ξ at the surface Σ if the left side of (6a) is replaced
by

∫
Σ dA φ �n ·∇G − φ∗/2 .

6. Application to free-surface flows

The contribution of the sea floor ΣD to the alternative potential representations (3) and (9)
is null for a Green function that satisfies the condition (1b) at the sea floor, as assumed here.
Thus, (3) becomes

φ∗ =
∫

ΣB

dA (un G − φ �n ·∇G) −
∫

Σ0

dx dy (wG − φGz) (12a)



At the free surface Σ0 , we have (Ωx,Ωy) = (−v , u) in accordance with (2b). Thus, (9) yields

φ∗ =
∫

ΣB

dA (un G + Ωy G z
x − Ωx G z

y ) −
∫

Σ0

dx dy (wG − uG z
x − v G z

y ) (12b)

The classical boundary-integral representation (12a) defines the potential φ∗ at a field point
�ξ in terms of boundary values of the normal velocity component un and the potential φ , and
involves a Green function G and its gradient ∇G . The alternative representation (12b) defines
the potential φ∗ in terms of boundary values of the velocity �u , and involves a Green function
G and the related functions G z

x and G z
y , which are no more singular than G . The alternative

potential representations (12a) and (12b) are further considered below for diffraction-radiation
of time-harmonic waves with forward speed, and the special cases corresponding to diffraction-
radiation without forward speed, steady flow, and the infinite-gravity and zero-gravity limits.

7. Flows in infinite-gravity and zero-gravity limits

Free-surface flows in the infinite-gravity and zero-gravity limits, associated with the bound-
ary conditions w=0 (infinite-gravity flow) and φ=0 (zero-gravity flow) at the plane z=0 , are
now considered. More generally, the nonhomogeneous problems corresponding to a specified
vertical velocity w or potential φ at the plane z = 0 are considered. In the infinite-gravity
limit, the Green function G is chosen to satisfy the boundary condition Gz =0 (and thus also
G z = 0 as verified further on) at z = 0 . The classical potential representation (12a) and the
weakly-singular representation (12b) then become

φ∗ =
∫

ΣB

dA (un G − φ �n ·∇G ) −
∫

Σ0

dx dy wG (13a)

φ∗ =
∫

ΣB

dA (un G + Ωy G z
x − Ωx G z

y ) −
∫

Σ0

dx dy wG (13b)

respectively. In the zero-gravity limit, the Green function G is chosen to satisfy the boundary
condition G=0 at z=0 . The potential representations (12a) and (12b) then become

φ∗ =
∫

ΣB

dA (un G − φ �n ·∇G ) +
∫

Σ0

dx dy φGz (14a)

φ∗ =
∫

ΣB

dA (un G + Ωy G z
x − Ωx G z

y ) +
∫

Σ0

dx dy (uG z
x + v G z

y ) (14b)

respectively. The boundary-integral representations (13b) and (14b) define the potential φ∗
at a field point �ξ inside the flow domain in terms of the normal and tangential components
un and �Ω of the velocity �u at the body surface ΣB and the (presumed known, null in typical
cases) normal velocity w (infinite-gravity limit) or tangential velocity components u and v
(zero-gravity limit) at the plane z=0 .

In the deep-water limit d → ∞ , the Green function G may be taken as G = R− for the
infinite-gravity limit and G = R+ for the zero-gravity limit, with

4π

{
R−

R+

}
=

{−1/r − 1/r′

−1/r + 1/r′

}
(15)

Here, r is given by (10a) and r′ is defined as

r′ =
√

�X ′ · �X ′ �X ′ = (X,Y, Z ′ ) = (x − ξ , y − η , z + ζ ) (16a)



The function (1/r′) z and its derivatives with respect to ξ and η are given by

(1/r′) z = − ln( r′− Z ′ )

{
(1/r′) z

x

(1/r′) z
y

}
=

−1
r′ ( r′− Z ′ )

{
X

Y

}
(16b)

Here, the restrictions z ≤ 0 and ζ ≤ 0 were used. At the plane z=0 , (10) and (16) yield

(1/r) z = ln( r − ζ ) (1/r′) z = − ln( r′− ζ )

Thus, the Green function R− satisfies the boundary condition (R−) z =0 at z=0 as previously
assumed. Expressions (10b) and (16b) show that the integral over the body surface ΣB in the
representations (13b) and (14b) are given by

−1
4π

∫
ΣB

dA
(
un (

1
r

± 1
r′ ) + ( ΩyX− Ωx Y ) (

sign(Z)
r (r + |Z | ) ∓ 1

r′ ( r′− Z ′ )
)
)

(17)

with X,Y, Z , Z ′, r and r′ given by (10a) and (16a). The integrand of the surface integral (17)
is no more singular than 1/r .

8. Time-harmonic flows with forward speed

Diffraction-radiation by a ship advancing (at constant speed U) in time-harmonic waves
(frequency ω) is now considered. Define the nondimensional wave frequency f , the Froude
number F , and τ̂ as

f = ω
√
L/g F = U/

√
gL τ̂ = 2Ff (18)

Also define Φ and G as

Φ = w − f2φ + i τ̂ u + F 2ux (19a)
G = Gz − f2G − i τ̂ Gx + F 2Gxx (19b)

The integrand of the integral over the free surface Σ0 in (12a) can be expressed as

wG − φGz = ΦG − φG − i τ̂(φG)x − F 2(uG − φGx)x

By using this identity and Stokes’ theorem in the integral over the free surface Σ0 in the
boundary-integral representation (12a), we obtain

φ∗ =
∫

ΣB

dA (un G−φ �n·∇G)−
∫

Σ0

dx dy (ΦG−φG)+
∫

Γ
dL [ i τ̂ φG+F 2(uG−φGx) ] ty (20a)

The integrand of the integral over the free surface Σ0 in (12b) can be expressed as

wG − uG z
x − v G z

y = ΦG − uGzz
x − v Gzz

y − f2 [ (φG zz
x )x + (φG zz

y )y ]

− i τ̂ [ (v G zz
y )x − (uG zz

y )y ] − F 2 [ (uG)x − (v G zz
xy )x + (uG zz

xy )y ]

By using this identity, Stokes’ theorem, and the identity �u ·�t = φt in (12b), we obtain

φ∗ =
∫

ΣB

dA (un G + ΩyG z
x − ΩxG z

y ) −
∫

Σ0

dx dy (ΦG − uGzz
x − v Gzz

y )

+
∫

Γ
dL [ f2φ (tyG zz

x − txG zz
y ) + i τ̂ φt G

zz
y + F 2(tyuG − φt G

zz
xy ) ] (20b)



The integral over the body surface ΣB in the classical potential representation (20a) involves
the derivative ∇G of G , and the integral along the boundary curve Γ involves the derivative Gx .
The integrals over the boundary surface ΣB and along the boundary curve Γ in the alternative
representation (20b) involve the Green function G and the related functions G z

x , G z
y , G zz

xy ,
G zz

x and G zz
y , which are no more singular than G .

The integrals over the free surface Σ0 in (20a) and (20b) are null if the potential is assumed
to satisfy the Michell linear free-surface boundary condition Φ = 0 associated with diffraction-
radiation of time-harmonic waves by a ship, and if a Green function that satisfies the related
free-surface boundary condition G = 0 is used. The function Φ is not null for a surface-effect
ship involving a pressure distribution over the free surface, or if nearfield effects are taken into
account. In any case, the linearized free-surface boundary condition Φ = 0 holds in the farfield,
and integration of Φ is required only over a finite nearfield region of the free surface Σ0 in the
vicinity of the boundary curve Γ .

If F = 0 , i.e. for the special case of time-harmonic flows at zero forward speed, the classical
representation (20a) becomes

φ∗ =
∫

ΣB

dA (un G − φ �n ·∇G) −
∫

Σ0

dx dy (ΦG − φG) (21a)

with Φ = w−f2φ and G = Gz−f2G , and the representation (20b) can be expressed as

φ∗ =
∫

ΣB

dA (un G + ΩyG z
x − ΩxG z

y ) +
∫

Γ
dL (tyG z

x − txG z
y )φ −

∫
Σ0

dx dy (ΦG − φG) (21b)

A notable property of the classical potential representation (21a) is that it does not involve
a line integral along the boundary curve Γ, unlike the weakly-singular representation (21b). If
f = 0 , i.e. for steady flows, the potential representations (20a) and (20b) become

φ∗ =
∫

ΣB

dA (un G − φ �n ·∇G) +F 2
∫

Γ
dL ty(uG − φGx) −

∫
Σ0

dx dy (ΦG − φG) (22a)

φ∗ =
∫

ΣB

dA (un G+ ΩyG z
x− ΩxG z

y ) +F 2
∫

Γ
dL (tyuG−φt G

zz
xy ) −

∫
Σ0

dx dy (ΦG−uGzz
x − v Gzz

y )

(22b)
with Φ = w +F 2ux and G = Gz+F 2Gxx . The representation (22a) is given in Brard (1972).

9. Comparison of alternative potential representations

The alternative potential representations (20a) and (20b) are now compared in the case
when the Green function G satisfies the free-surface boundary condition G = 0 . This Green
function can be expressed in terms of simple Rankine sources and a double Fourier integral:

G = GR+ GF (23a)

In deep water, the Rankine component GR may be taken as

GR =
−1
4π

(
1
r

− 1
r′ ) (23b)

where the Rankine sources r and r′ are defined by (10a) and (16a). The corresponding Fourier
component GF for deep water is given by the double Fourier integral

GF =
1

4π2 lim
ε→+0

∫ ∞

−∞
dβ

∫ ∞

−∞
dα

e i [ α ( x − ξ ) + β ( y − η ) ]+ k ( z + ζ )

(f−Fα)2 − k + i ε (f−Fα)
(23c)



e.g. see Noblesse (2001a). Here, k =
√
α2+ β2 is the wavenumber associated with the Fourier

variables α and β . By substituting the decomposition (23a) of the Green function into the
potential representations (20a) and (20b), we can express φ∗ as

φ∗ = φR
∗ + φF

∗ (24)

The contributions of the Rankine component GR to the surface integrals over the mean free
surface Σ0 and the line integrals along the boundary curve Γ in the potential representations
(20a) and (20b) are null, and the Rankine component φR

∗ in the Rankine-Fourier decomposition
(24) of the potential φ∗ is given by

φR
∗ =

−1
4π

∫
ΣB

dA [un (
1
r

− 1
r′ ) +

{
a1

a2

}
] (25a)

Here, a1 is associated with the classical potential representation (20a) and is defined as

a1 = −φ �n ·∇ (
1
r

− 1
r′ ) (25b)

The function a2 corresponds to the weakly-singular representation (20b) and is given by

a2 = (ΩyX− Ωx Y )(
sign(Z)

r (r + |Z | ) +
1

r′ ( r′− Z ′ )
) (25c)

in accordance with (17). Here, X,Y, Z , Z ′, r and r′ are given by (10a) and (16a). Expressions
(25), (10a) and (16a) show that the Rankine potential φR

∗ is null at the mean free surface ζ=0 .
Thus, (24) becomes

φ∗ = φF
∗ at ζ = 0 (26)

By substituting expression (23c) for the Fourier component of the Green function into (20a)
and (20b), we obtain the Fourier-Kochin representation of the free-surface potential φF

∗

φF
∗ =

1
4π2 lim

ε→+0

∫ ∞

−∞
dβ

∫ ∞

−∞
dα

e−i ( α ξ + β η )+ k ζ S(α , β)
(f−Fα)2 − k + i ε (f−Fα)

(27)

The amplitude (or spectrum) function S(α , β) in the Fourier representation (27) is given by
distributions of elementary waves along the boundary curve Γ and over the boundary surface
ΣB and the free surface Σ0 . Specifically, the spectrum function S is given by

S =
∫

ΣB

dA [un− ( i α nx+ i β ny + k nz )φ ] e i ( α x + β y )+ k z

−
∫

Σ0

dx dy Φ e i ( α x + β y ) +
∫

Γ
dL [F 2(u − i α φ) + i τ̂ φ ] ty e i ( α x + β y ) (28a)

S =
∫

ΣB

dA (un+ i
αΩy−β Ωx

k
) e i ( α x + β y ) + k z −

∫
Σ0

dx dy Φ e i ( α x + β y )

+
∫

Γ
dL [F 2(tyu +

αβ

k2 φt) − τ̂
β

k2 φt + i f2 α ty−β tx

k2 φ ] e i ( α x + β y ) (28b)

for the classical representation (20a) and the weakly-singular representation (20b), respec-
tively. Expression (26) and the Fourier-Kochin representation of the potential φF

∗ given by
(27) and (28) show that, at the free surface ζ = 0 , differences between the classical potential
representation (20a) and the weakly-singular representation (20b) stem from the corresponding
spectrum functions (28a) and (28b). Expression (28b), obtained here from the weakly-singular



potential representation (20b), was previously obtained in Noblesse and Yang (1995) via a
transformation of (28a).

The alternative spectrum functions (28a) and (28b) are compared in Noblesse et al. (2002),
where the steady flow generated by a point source and a point sink at an ellipsoidal boundary
surface ΣB is considered. This comparison shows that the numerical cancellations that occur
between the surface integral over the boundary surface ΣB and the line integral along the
boundary curve Γ in expression (28a) for the spectrum function associated with the classical
potential representation (20a) are largely eliminated in expression (28b) for the spectrum func-
tion associated with the weakly-singular potential representation (20b).

10. Velocity at boundary surface and at boundary curve

The potential representations (12b), (13b), (14b), (20b) involve the tangential components
Ωx,Ωy and u , v of the velocity �u . These tangential velocity components are now expressed in
terms of the potential φ at the boundary surface Σ . Let �s = (sx, sy, sz) and �t = (tx, ty, tz)
stand for two unit vectors tangent to Σ . The unit vector �n = (nx, ny, nz) normal to Σ is related
to the tangent vectors �s and�t by

�n = (�s ×�t )/
√

1− µ2 with µ = �s ·�t (29)

The velocity �u at the surface Σ can be expressed as

�u = un �n + us �s + ut�t (30a)

where (un, us, ut ) are the components of �u along the unit vectors �n ,�s ,�t attached to Σ . The
components us and ut in (30a) can be expressed in terms of the derivatives φs and φt of the
potential φ along the unit tangent vectors �s and�t. Specifically, (30a) yields

φs = �u · �s = us+ µut φt = �u ·�t = ut+ µus

We then have
us =

φs − µφt

1− µ2 ut =
φt − µφs

1− µ2 (30b)

and (30a) becomes

�u = un �n + φs
�s − µ�t

1− µ2 + φt

�t − µ�s

1− µ2 (30c)

Expressions (30c) and (29) show that the vector �Ω = �u × �n is given by

�Ω =
φt �s − φs�t√

1− µ2
= Ωs �s + Ωt�t (31a)

It follows that
Ωx =

sxφt − txφs√
1− µ2

Ωy =
syφt − tyφs√

1− µ2
(31b)

Expressions (29)–(31) hold for the body surface ΣB and the free surface Σ0 .

The unit vectors �s and �t tangent to the body surface ΣB must be oriented so that the unit
vector �n defined by (29) points into the flow domain. Furthermore, at the boundary curve Γ ,
the vector �t is tangent to Γ and oriented clockwise (looking down). Thus, the unit vector �s
tangent to ΣB points upward along the curve Γ . In the special case of a body surface ΣB that
intersects the free-surface plane orthogonally, we have �s = (0 , 0 , 1) at the intersection curve Γ
of ΣB with the free surface, and expressions (31b) yield ( Ωx,Ωy ) = −( tx, ty )w .



At the free-surface plane Σ0 , the horizontal velocity components u and v can be expressed
in terms of the derivatives φs and φt of the potential φ along two unit vectors �s = (sx, sy, 0)
and�t = (tx, ty, 0) in the plane z=0 . Specifically, (2b) and (31b) yield Ωy = u , Ωx = −v , and

u =
syφt − tyφs√

1− µ2
− v =

sxφt − txφs√
1− µ2

(32a)

The unit vectors �s and�t in the free-surface plane Σ0 must be oriented so that (29) defines a
unit vector �n normal to Σ0 that points into the flow domain; i.e. we must have �n = (0 , 0 ,−1).
In addition, at the boundary curve Γ , the vector�t is tangent to Γ and oriented clockwise as
already noted. Thus, along the curve Γ , the unit vector �s tangent to ΣB points into the flow
domain (like the vector �n ). At the curve Γ , the vector �s in (32a) may be taken as the unit
vector �ν = (−ty, tx, 0) normal to the curve Γ in the plane Σ0 . Expressions (32a) then become

u = txφt − tyφν v = txφν + tyφt (32b)

The potential representations (20a), (20b), and (22) involve u (the x−component of the
velocity �u ) at the boundary curve Γ . The expression

u = txφt − ty φν (33a)

given by (32b) defines u at the curve Γ in terms of derivatives of the potential φ along two unit
vectors�t = (tx, ty, 0) and �ν = (−ty, tx, 0) that lie in the free surface Σ0 . At the body surface
ΣB , expressions (30c), (30b), and (29) yield

u = txφt + nxun+ tynz
√

1− µ2 us (33b)

This expression defines u at the curve Γ in terms of derivatives of φ along two unit vectors
�t = (tx, ty, 0) and �s = (sx, sy, sz) that are tangent to the body surface ΣB . Expression (33b)
is given in Brard (1972) and has been used in numerous numerical and theoretical studies,
including the Fourier-Kochin approach developed in Noblesse and Yang (1995) and the slender-
ship approximation to steady ship waves given in Noblesse (1983). Expressions (33a) and (33b)
yield identical values of u at Γ if

−tyφν = nxun+ tynz
√

1− µ2 us

In the special case of a body surface ΣB that intersects the free surface orthogonally, we have
nz = 0 and nx = −ty, and the foregoing relation becomes φν = un = �u · �n = φn . Thus, the
“free-surface expression” (33a) and the “body-surface expression” (33b) yield identical values
of the velocity component u at the boundary curve Γ if the boundary condition φn = un at
the body surface ΣB is satisfied at the free-surface plane z=0 . It is not a priori obvious that
this continuity condition holds because the boundary conditions at the body surface ΣB and
at the free surface Σ0 may not allow a continuous velocity field at the intersection curve Γ .

11. Conclusion

The boundary-integral representations (9), (11), (12b), (13b), (14b), (20b), (21b), (22b)
define the potential φ∗ at a field point �ξ in terms of a Green function G and related functions
that are no more singular than G . These potential representations are weakly singular in com-
parison to the classical boundary-integral representations (3), (12a), (13a), (14a), (20a), (21a),
(22a), which define the potential in terms of G and ∇G . Another interesting difference between
the classical potential representations and the corresponding weakly-singular representations



is that the latter representations define a potential φ∗ that is continuous at the boundary sur-
face Σ (the potential defined by the classical representations, which involve surface distributions
of dipoles, is well-known to be discontinuous at the boundary surface).

The illustrative numerical application to the steady flow due to a point source and a point
sink presented in Noblesse et al. (2002) shows that the numerical cancellations (and related
loss of accuracy) that occur between the waterline integral and the hull integral in the classical
representation (22a) of steady ship waves are largely eliminated in the weakly-singular rep-
resentation (22b). This property indicates that the weakly-singular potential representations
given in this study may be useful for numerical purposes.

Expressions (31b) and (32) — which define the tangential velocity components Ωx,Ωy and
u , v in terms of the derivatives φs and φt of the potential φ along unit vectors �s and�t tangent to
the boundary surface ΣB ∪Σ0 — show that the weakly-singular potential representations (12b),
(20b), (21b) and (22b) provide integro-differential equations that can be used to determine the
potential at ΣB ∪ Σ0 ; similarly, the potential representations (11), (13b) and (14b) provide
integro-differential equations that define the potential at ΣB . In practice, the weakly-singular
potential representations can be enforced at a set of collocations points�ξ taken as vertices of a
set of flat triangular panels that closely approximate the boundary surface. In this low-order
panel method, the potential φ is assumed to vary linearly within a panel, and the tangential
velocity components Ωx,Ωy (on body-surface panels) and u , v (on free-surface panels) are
constant within a panel, and are determined from the values of the potential at the vertices of
the triangular panel using (31b) and (32a). On body-surface panels, the normal velocity un

(known from the boundary condition at the body surface ΣB) is likewise constant. Thus, the
potential φ varies linearly and both the normal and tangential components of the velocity �u
are constant within a panel (a consistent level of approximation).

An important difference between the weakly-singular representation (7) of the velocity, ex-
tended to free-surface flows in Noblesse (2001b), and the representation (9) of the potential
is that the velocity representation (7) does not ensure potential flow. In addition, the ap-
proach expounded in Noblesse (2001b) for free-surface flows, based on the classical potential
representation (9) and the weakly-singular velocity representation (7), yields a system of four
coupled representations for the potential φ and the three components u , v , w of the velocity �u .
These representations of the potential and the velocity involve G and ∇G . The weakly-singular
potential representation (9), on the other hand, provides a single (integro-differential) repre-
sentation that defines φ and �u = ∇φ and that only involves G and related functions no more
singular than G , as explained above.

In the particular case f = 0 (i.e. for steady flows), the integral over ΣB in the weakly-
singular potential representation (22b) involves un, Ωx and Ωy, which are defined in terms of
the velocity �u by (2), and the integral over Γ involves u and φt = �u ·�t . Thus, if f = 0 , the
integrals over ΣB and Γ in the representation (22b) only involve the velocity �u ; i.e. these
integrals do not involve the potential φ , unlike the classical representation (22a).
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