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Summafy

The Fourier-Kochin representation of steady ship waves is used to extend nearfield steady
ship waves into the farfield. The coupling of nearfield and farfield ship waves using the Fourier-
Kochin theory is based on two main fundamental theoretical results. These fundamental results
are summarized, and the Fourier-Kochin representation of farfield steady ship waves is given.
The Fourier-Kochin flow representation is verified by considering the waves generated by a sub-
merged point source. An illustrative application to the farfield extension of the nearfield flow
about the Wigley hull — determined using a fully nonlinear calculation method based on the
Euler equations — is also presented.

Résumé

La représentation de Fourier-Kochin de ’écoulement permanent autour d’une caréne de navire
est appliquée au prolongement lointain d’un écoulement proche. Le couplage entre un écoulement
proche et la représentation de Fourier-Kochin de I'écoulement potentiel linéaire lointain est fondé
sur deux résultats théoriques fondamentaux. Ces résultats fondamentaux sont résumsés, et la
représentation de Fourier-Kochin du champ de vagues lointain est présentée. La représentation
de Fourier-Kochin est vérifiée par 1'étude du champ de vagues créé par une source ponctuelle
submergée. Une application au prolongement lointain de ’écoulement proche — calculé au moyen
d’une méthode de résolution numeérique des équations d'Euler — autour de la coque de Wigley
est aussi présentée.
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Introduction

The Fourier-Kochin theory of steady and time-harmonic ship waves expounded in Noblesse
et al. (1997,1999) is applied to the coupling of nearfield and farfield steady ship waves. More
precisely, the Fourier-Kochin representation of ship waves is used to extend nonlinear nearfield
steady ship waves into the far field. The nearfield ship waves are determined here using the fully
nonlinear calculation method, based on the Euler flow equations, of Yang and Léhner (1998).

The coupling of nearfield and farfield ship waves using the Fourier-Kochin theory is based
on two main fundamental theoretical results. These fundamental results are first summarized.
Next, the Fourier-Kochin representation of farfield steady ship waves is given. The waves due to
a submerged point source are then considered for purposes of validation. Finally, an illustrative
application to the farfield extension of the nearfield flow about the Wigley hull is presented.

Fourier-Kochin theory of steady and time-harmonic ship waves

The Fourier-Kochin theory of steady and time-harmonic ship waves is based on two funda- -

mental theoretical results. These important theoretical results are now summarized.

One result, given in Noblesse et al. (1997), is a new boundary-integral representation of steady
and time-harmonic free-surface potential flows with forward speed. This boundary-integral rep-
resentation defines the velocity field Vi in a potential flow ezplicitly in terms of the velocity
distribution {(u,v,w) at a boundary surface . Thus, this flow representation does not involve
the potential ¢ at £ — unlike the usual Green identity which expresses ¢ within a flow domain
in terms of boundary values of the potential ¢ and its normal derivative 8¢/8n — and defines
the velocity field Vi directly, instead of via numerical differentiation of ¢. The new flow rep-
resentation can be used to extend a given nearfield flow (determined using any nearfield flow
solver, including solvers based on finite differences or Rankine singularities) into the far field,
and to couple a viscous nearfield flow — for which a velocity potential cannot be defined — and
a farfield linear potential-flow representation.

Another result, given in Noblesse et al. (1999), is a new mathematical representation of steady
and time-harmonic free-surface flows with forward speed generated by arbitrary distributions of
singularities (e.g., sources and dipoles) over (flat or curved) hull-panels or waterline-segments.
Such flows are called super Green functions because of the similarity and difference with ordinary
Green functions, which are associated with a point source instead of a distribution of singularities.
The mathematical representation of super Green functions given in Noblesse et al. (1999) is
valid for a broad class of waves in generic dispersive media. This representation of generic super
Green functions provides a useful formal decomposition of nearfield free-surface flows (and other
dispersive waves) into a nonoscillatory locel component, which decays rapidly and is significant
only in the near field, and a wave component which fully accounts for the waves in the near
field (as well as in the far field where the local component is negligible). The expression for the
wave component, given by single Fourier integrals along the curves (called dispersion curves)
defined by the dispersion relation, is especially simple and is well suited for accurate and efficient
numerical evaluation.

This Fourier representation of the wave component in the mathematical representation of
generic super Green functions and the boundary-integral flow representation given in Noblesse
et al. (1997) are used in this study to determine the farfield steady ship waves generated by
a prescribed velocity distribution at a boundary surface, and to extend nonlinear steady ship
waves predicted by a nearfield calculation method into the far field. The nearfield wave drag
determined via integration of the hull pressure and the farfield wave drag obtained from the
Havelock formula for the radiated wave energy are in relatively fair agreement.
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Farfield extension of nearfield steady ship waves

Consider a ship advancing along a straight path, with constant speed U, in calm water of
effectively infinite depth and lateral extent. The flow is observed from a Cartesian system of
coordinates moving with the ship. The X axis is taken along the path of the ship and points
toward the ship bow; thus, the ship advances in the direction of the positive X axis. The Z
axis is vertical and points upward, and the mean free surface is chosen as the plane Z=0. The
flow appears steady in the translating system of coordinates,—and consists of the disturbance
flow due to the ship superimposed on a uniform stream opposing the ship’s forward speed. The
components of the disturbance velocity along the (X, Y, Z) axes are denoted (U, V, W) . Thus, the
total velocity is given by (U~ U ,V,W). Nondimensional coordinates and velocities are defined
in terms of a characteristic length L (typically the ship length) and the ship speed I as

(:I:,y,z)‘-:(X,Y,Z)/L (‘U'?U?w)z(U:V’W)/u

A geometrical surface ¥ surrounding the ship is considered. The intersection curve between
the surface % and the mean free-surface plane =0 isdenoted I'. The unit vector 7 = (n% n¥ n*)
normal to the surface ¥ points outside . The unit vector £ = (t% t¥,0) tangent to the curve I’
is oriented clockwise. The flow in the region outside ¥ is assumed to be potential and linear; i.e.
the classical Kelvin linear boundary condition &u/8¢ + 21w = 0 is assumed to hold at the mean
free-surface plane z=0 outside I'. Here, v is defined as

v =1/(2F?%) with F=U/\/gL

F is the Froude number and g is the acceleration of gravity. The flow in the outer linear
potential-low region can then be defined using a boundary-integral representation based on the
Green function satisfying the Kelvin boundary condition. The boundary-integral representation
given in Noblesse et al. (1997) is used here. This boundary-integral representation defines the
disturbance velocity 11'(.;?), at a field point f = (£,1,¢ £0) of the linear potential-flow region
outside a boundary surface X, generated by a given disturbance velocity distribution @,(%) at
LU ezplicitly in terms of the velocity distribution @, .

The Green function G associated with the Kelvin free-surface boundary condition is given by
the sum of a simple-singularity component G defined in terms of simple Rankine singularities,
and a component G¥ that accounts for free-surface effects and is defined by a double Fourier
superposition of elementary waves. Thus, the free-surface Green function is expressed in terms of
two complementary fundamental solutions of the Laplace equation, namely the simple Rankine
singularity 1/r and the elementary wave function exp{kz+i (az + By) ], which are well suited for
representing a local flow disturbance and the system of waves generated by a ship, respectively.
The velocity field 4 can similarly be expressed as the sum of a simple-singularity component i
given by distributions of simple Rankine singularities over ZUT, and a free-surface component
¥ given by a double Fourier superposition of elementary waves. The Fourier representation
of free-surface effects #% can be further decomposed into a wave component %" and a local
component %%, as shown in Noblesse et al. (1999). Thus, the velocity field @ can be expressed
in terms of the flow decomposition '

@=a%+al+as (1

This flow decomposition becomes & ~ #@" at some distance downstream from the surface T,
where the local component @ and the simple-singularity component % are negligible.

The velocity field ﬁ.‘(f_'), at a field point £ = (¢,n7,( <0} of a linear potential-low region
downstream from a surface I, generated by a given velocity distribution ilg{Z) over ZUT is now
defined. Only the wave component &% is considered in the present study. Both @ and i, are
disturbance velocities.
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Fourier-Kochin representation of farfield steady ship waves
At a point E’ behind the boundary surface £, the wave component % W(a is given by

w

u o
4x{ oW =/m dﬁa?ﬁe B 38 elk—il{atnB)
wW —oo k—v ik

The Fourier variable o and the wavenumber k = / 0.2+EE are functions of the Fourier variable

0B given by
k(B) = v+ \v?+ 52 afff) = \/k(B) /F (2)

These relations ensure that the dispersion relation F%? = k is satisfied. S = S(a,f) is the
spectrum function associated with the velocity distribution over ZUT . The spectrum function
S is defined further on. The wave component " may be expressed as

uv a (S, cosp + S;sing) '
B r s P
4r vV %/ dp a B (S cosp + Sising) p eSk—CBY B

-8 kv k ( Sy sing — S;cosp)

w?
where p = {a+nf, S, and §; stand for the real and imaginary parts of the spectrum function

S, and B and C are positive real constants satisfying the conditions 8, 1 and e~ ¢ «1.

The integration range in the foregoing Fourier representation of the wave component can be
reduced in half :

uW Be dﬁa a A 4794 ‘
e z[ L pap §eck-CBUn; (32)
wW 0 TV L AF

Here, the functions A%, Af and A* are defined as
A%= [(87 + 57) cos(€ @) + (S + S;7) sin(€ o) ] cos(nB)
+[(8]" = 87 ) eos(€ @) — (S — 57 ) sin(€ a) ] sin(n §) (3b)

AP = [(8} + 57 ) cos(€ a) — (S + S;) sin(€ @) | sin(n B)
+[(S} — 87 ) cos(€ ) + (Sff — 87 ) sin(€ &) ] cos(n B) (3¢)

A¥=[(SF - 8 )cos(Ea) + (§F — 87 ) sin(¢ a) ] sin(n B)
—[(8F + 87 ) cos(¢ @) — (S + 87 ) sin(€ @) | cos(n B) (3d)
where 5% = S,(a,10) and S = Si(a,28).
The spectrum function S is given by a distribution of elementary waves exp|kz+i (az+8y)] :
S(a,f) =/dA(f)e“+='(“+ﬁv)A2(f)+F2 dL(E) et (@2 +8Y) AT(z) (4a)
) r

Here, dA(Z) and dL(Z) respectively stand for the differential elements of area and arc length of
¥ and T at the integration point ¥ = (z,y,2<0), and the amplitude functions A¥ and AY are
defined in terms of the given boundary velocity distribution i, by :

A% = (nuy + nYoy + nfw,) + i [ (n"wy — n’uy) % — (n®vg — n¥wy) g] (4b)
A= @+ Ly (g + 0 )2y — t70g) = 22 (170 + Vo) + 8 4
= ( +k_2)( ug + tYug) + () (t¥uy — '”g)-“k_g( ug + tYug) + tYu, (4c)
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Thus, the farfield waves @"(£) generated by a velocity distribution iy(Z) over a surface
BUT are defined by the Fourier representation (3) where the spectrum function S is given by
the distribution of elementary waves (4). The drag DY = plf2L2CW associated with the wave
energy transported by the farfield waves (3) can :also be determined from the spectrum function

S using the Havelock formula |

Be
=g [ B (S 5By on st ®

25 B k—v

where Sy and S; are the real and imaginary partd of the spectrum function (4), as already noted.
\

Verification of Fourier-Kochin flow repres+ntation for a submerged point source

For the purpose of verifying the foregoing Foutier-Kochin representation of farfield steady ship
waves, the linear free-surface potential flow due tp a submerged point source of unit strength, i.e.

evaluated at a boundary surface X that encloses the source. This boundary velocity distribution- - —-- -

a Green function, is considered. Briefly, the distiba.nce velocity generated by the point source is

is then extended outside ¥ using the Fourier-Kochin flow representation. The outer flow fields —
outside X — determined directly, by using the expressions for the gradient of the Green function
summarized in Ponizy et al. (1994), and reconstnucted via the Fourier-Kochin representation are

then compared. ‘ '

Thus, we now consider the linearized potenkial flow generated by a point source of unit
strength advancing with constant speed I along a straight path submerged a depth D below
the mean free-surface plane z = 0. The submergence depth D is taken as the previously-defined
characteristic length L. The Froude number P is then given by F = U/\/gD. The flow is
observed from a moving system of coordinates attached to the source and therefore appears
steady. The z axis is chosen parallel to the path iwf the moving source and points in the direction
of motion of the source. The z axis is vertical ahd points upward. The origin of the system of
coordinates is taken in the mean free-surface plane z = 0 and above the source, which is then
located at (0,0, —1}. The disturbance velocity gtzerated by the source, at a matching boundary
surface  and in a flow region outside I, is evaluated using the integral representations of the
gradient of the Green function summarized in ;inizy et al. (1994), as already noted.

For the purpose of verifying that the Fouriex-Kochin extension of the velocity distribution
generated by the source at a matching boundary surface T is independent of 2, two matching
boundary surfaces X are actually considered. Thase matching surfaces are chosen as half spheres,
centered at (0,0,0), with radii equal to 3 and 4.§, i.e. 3 and 4.5 times the submergence depth of
the point source. The velocity distributions (u,u,w) generated by the point source at the large
and small half spheres are depicted in Fig. 1a for a Froude number equal to 1. Fig. la shows
that the velocity distributions over the two half $pheres are different, as one expects.

The spectrum functions S associated with thd velocity distributions over the large and small
spheres are considered in Fig. 1b, where the lefi and right columns respectively correspond to
the real and imaginary parts S, and S; of §. As is indicated in (4a), the spectrum function
S associated with a velocity distribution over al matching boundary surface TUT is given by
distributions of elementary waves over the surface ¥ and the intersection curve I' of the surface
¥ with the plane z = 0. In the present case, & and T are half spheres and circles centered at the
origin (0,0,0) . The first (top) and second rows in Fig. 1b respectively show the contributions of
the surface T and of the curve I' to the spectrum fﬁnction S'. The surface and curve contributions
to S can be seen to be different for the large andjsmall half spheres, in accordance with the fact
that the velocity distributions over these two ha.l} spheres are not identical (Fig. 1a).

Expressions (3) and (5) show that the farfield waves, and the related wave drag, associated
with a velocity distribution over a boundary surface SUT are determined by the spectrum
function S, which is defined by (4) as the sum of surface and curve contributions. Thus, if the
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Fourier-Kochin extension of the velocity dis?ibution generated by the point source at a matching
boundary surface X is to be independent of T as one expects, the sum of the surface and curve
contributions to the spectrum function § oﬁght to be the same for the large and small spheres.
This expectation can be verified from the third (middle) row in Fig. 1b, which depicts the sum
of the surface and curve contributions to the spectrum function (4). Note that in the present
case, the imaginary part S; is null and the real part S, is nonoscillatory, even though the surface
and curve contributions to the spectrum fuIction are oscillatory functions of 3.

The fourth row of Fig. 1b shows the surface and curve contributions to the spectrum function
§ for the large sphere, and the fifth (bottoim) row presents the same information for the small
sphere. The imaginary parts of the surface and curve contributions to S may be seen to entirely
cancel out (the third row of Fig. 1b shows that S; = 0, as was already noted). Significant
cancellations occur also between the real parts of the surface and curve contributions to S.
These cancellations require accurate numerical evaluation of the spectrum function.

Fig. 1c depicts the wave patterns generated by the submerged point source for two values
of the Froude number equal to-1 (left half of Fig: 1c) and 1.25 (right half}. The direct wave =
patterns, computed from the. expressions for the gradient of the Green function given in Ponizy
et al. (1994), and the reconstructed FouriertKochin patterns are shown side by side. The inter-
section circle I" of the matching half spherq £ with the plane 2z = 0 is shown in Fig. 1c. The
Green-function and Fourier-Kochin patterns can be seen to be identical except near I' where
slight differences can be observed. These nearfield differences stem from the fact that the simple-
singularity component %5 and the local component @ L in the flow decomposition (1) are ignored
in the present implementation of the Fourief-Kochin flow representation.

Farfield extension of nonlinear nearﬁe‘d steady flow about the Wigley };ull

Application to the Wigley hull is now sujnmarized. The Wigley hull is defined by
y=£b(1-42?)[1— (z/d?] with b=0.05,d=0.0625

The nearfield flow is computed using the fully nonlinear calculation method, based on the Euler
flow equations, of Yang and Léhner (1998 The nearfield flow is evaluated at the matching
boundary surface 3 defined by

oYa?+ Y+ 2P =1 with a=06,b5=0055,c=0.1 (6)

The solution domains in the Fourier-Ko¢hin flow representation and the nonlinear nearfield
flow calculation method are respectively bounded by the mean free-surface plane z = 0 and the
actual free surface z = e, where e stands for the computed free-surface elevation. The nearfield
flow computed at the Euler matching bounfary surface (with z < e) is therefore mapped onto
the Fourier-Kochin boundary surface (withj z < 0) required for the farfield flow extension. A
continuous flow mapping based on linear igterpolation is used here. The disturbance velocity
distribution, predicted by the Euler nearfidld flow solver and used in the Fourier-Kochin flow
extension, at the matching boundary surface (6) is depicted in Fig. 2a for F = 0.316.

The nonlinear Euler nearfield wave pattemns and their linear Fourier-Kochin farfield extensions
are shown in Fig. 2b for F' = 0.25,0.316, #,nd 0.408. The nearfield and farfield wave patterns
appear to be in fairly good agreement, especially in view of the limitations inherent to both
the farfield and the nearfield flows. In particular, the simple-singularity component #° and the
local component %@’ in the flow decomposition (1) are ignored in the present implementation of
the Fourier-Kochin flow representation, as was already noted. In addition, numerical damping
attenuates the nearfield flow relatively quickly.

The nearfield drag predicted by the nonlinear Euler nearfield flow solver — via integration of
the hull pressure — and the ferfield drag dbtained in the Fourier-Kochin extension — via the
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Havelock formula (5) for the wave energy associated with the spectrum function (4) — are listed
below, together with the corresponding experimental values :

F Near  Far Exp
0.250 0.97 0.90 0.82
0.316 1.58 1.55 1.525
0.408 2.33 2.27 2.31

The foregoing theoretical and experimental values of the wave drag coefficient (multiplied by
1000) are in relatively fair agreement.

Conclusion

The Fourier-Kochin theory of steady and time-harmonic ship waves expounded in Noblesse
et al. (1997,1999) has been applied to farfield steady ship waves. This theory defines the farfield
steady waves generated by a given velocity distribution &y over a boundary surface EUT in terms
of the single Fourier integral-(3) and the spectrum function (4), which is defined ezplicitly in
terms of 4. The related wave drag can also be obtained directly from %, and the spectrum
function &, via the Havelock formula (5) .

For the purpose of verifying the Fourier-Kochin representation of farfield steady ship waves,
the linear free-surface potential flow due to a submerged point source of unit strength, i.e. a
Green function, has been considered. Briefly, the disturbance velocity generated by the point
source has been evaluated at a boundary surface ¥ enclosing the source, and extended outside &
using the Fourier-Kochin flow representation. The outer flow fields — outside ¥ — determined
directly, using the expressions for the gradient of the Green function given in Ponizy et al. (1994),
and reconstructed via the Fourier-Kochin theory are in agreement (Fig. Ic) as expected.

The Fourier-Kochin representation of farfield ship waves given here can be used to extend
nonlinear nearfield ship waves — predicted by any nearfield flow calculation method — into the
far field. An illustrative application to the Wigley hull has been presented. The nearfield flow in
this example is determined using the fully nonlinear calculation method, based on the Euler flow
equations, of Yang and Léhner (1998). The nonlinear Euler nearfield wave patterns and their
linear Fourier-Kochin farfield extensions are in fairly good agreement (Fig. 2b), especially in view
of the limitations inherent to both the farfield and the nearfield flows. In particular, only the
wave component %" in the flow decomposition (1) is considered in the present implementation
of the Fourier-Kochin theory. The wave drags predicted by the Euler nearfield flow solver {via
hull-pressure integration) and obtained within the Fourier-Kochin extension (by means of the
Havelock formula) are also in relatively fair agreement with one another, and with experiments.
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