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RESUME

Des resultats de calculs numeriques de resistance de vagues, fonction
spectre, ligne d'eau et champ de vagues sont presentes pour quatre coques
de navire pour lesquelles existent des valeurs experimentales. Des
applications numeriques effectuees precedemment par d'autres auteurs sont
egalement examinees. L'approximation du navire elance donne des
predictions numeriques comparables a celles qui peuvent etre obtenues au
moyen de methodes numeriques considerablement plus complexes.

SUMMARY

THE SLENDER-SHIP APPROXIMATION: COMPARISON BETWEEN
EXPERIMENTAL DATA AND NUMERICAL PREDICTIONS

Numerical predictions of wave resistance, wave spectrum, wave profiles
and wave patterns obtained using the slender ship approximation are
presented for four hull forms for which experimental data are available.
Previous numerical applications of the slender—ship approximation by other
authors are also reviewed. The slender-ship approximation yields numeri-
cal predictions that are comparable to those which can be obtained using
considerably more complex numerical methods.
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INTRODUCTION

Near-field potential-flow calculations about ships advancing at
constant speeds in calm water are routinely required for evaluating their
hydrodynamic characteristies, in calm water and in waves, and for deter-
mining the required propulsion and control devices. Calculations of far-
field wave patterns are also important in connection with wave-resistance
predictions and remote sensing of ship wakes.

Alternative numerical methods have been developed for evaluating near-
field flow about a ship, that is, flow at the hull surface and in its
vicinity. These include finite-difference methods, e.g. Coleman [2] and
Miyata and Nishimura [3], and the more widely used boundary integral
equation methods, also known as panel methods. The latter methods can be
divided into two main groups, according to the Green function that is
used. These two groups of methods are the Rankine-source method and the
Neumann—K elvin method, which are based on the simple Rankine (free-space)
fundamental solution and the more complex Green function satisfying the
linearized free-surface boundary condition, respectively.

The Rankine-source method was initiated by Gadd [4], Dawson [5] and
Daube [6], and has since been adopted by many authors. The Neumann-Kelvin
approach has a long history. A survey of recent numerical predictions
obtained by a number of authors on the basis of the Neumann—Kelvin method
may be found in Baar [7]. This study and that by Andrew, Baar and Price
[8] also contain extensive comparisons of the authors' own Neumann—<Kelvin
numerical predictions with experimental data. An approximate solution,
defined explicitly in terms of the value of the Froude number and the hull
shape, to the Neumann—Kelvin problem was proposed in Noblesse [9].

Several numerical applications of this slender-ship approximatiom, by the
present authors and by others, are reviewed further on in this paper.

The aforementioned alternative numerical methods for predicting flow
in the vicinity of a ship are not all directly suitable for predicting the
wave pattern of a ship at large, or even moderate, distances. More
precisely, the finite-difference method and the Rankine-source panel
method require truncating the flow domain at some relatively-small
distance away from the ship and therefore can only be used for near-field
flow calculations. (However, these near-field flow predictions can be used
as input to a far-field Neumann—Kelvin flow representation).

Nn the other hand, the Neumann-Kelvin theoretical framework is equally
suitable for near-field and far-field flow predictions. Indeed, the far-
field Neumann—Kelvin flow representation is a simplified special case of
the corresponding near-field representation. In particular, the slender-
ship approximation provides an explicit representation of the flow due to
a ship valid both in the near field and in the far field. More generally,
a modified mathematical expression for the wave-spectrum function in the
Neumann-Kelvin representation of the steady wave pattern of a ship was
recently obtained in Noblesse and Lin [10]. This new expression is con-
siderably better suited for accurate numerical evaluation than the well-
known usual expression given in [9] and elsewhere.

THE SLENDER-SHIP APPROXIMATION

A hierarchy of slender-ship approximations is defined in [9]. At the
simplest level is the zeroth-order approximation, which provides an
explicit expression for the wave-spectrum function (and hence the wave
resistance) in terms of the hull speed, length and shape. This approxima-
tion is extremely simple and may be regarded as a generalization of the
classical thin-ship approximation of Michell [11]. More precisely, the
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zeroth—-order slender-ship approximation is obtained by merely neglecting
the near-field flow disturbance caused by the ship in the expression for
the far-field wave-spectrum function. Thus, no integral equation is
solved and no Green function is evaluated in this approximation, which is
conceptually and numerically very simple.

The zeroth-order approximation can nevertheless be useful for some
practical ship-design applications if properly applied, in the manner
explained by Scragg et al. [12] and Letcher et al. [13]. More precisely,
Scragg found that the zeroth-order approximation was inadequate for
predicting the wave resistance of a given hull form but nevertheless pro-
vided quite accurate predictions of the relative differences in resistance
due to hull-form modifications.

The next level of approximation is the first-order approximation,
which provides an expression for the flow about a ship defined explicitly
in terms of the value of the Froude number and the hull shape. This
expression is valid at any point in the flow field and thus provides an
approximation for the near—field flow and the far-field waves. The first-
order slender-ship approximation is obtained by merely neglecting the
unknown doublet-distribution term in the modified integro-differential
equation for the velocity potential given in [9] and hence 1is defined in
terms of a source-distribution alone, with density explicitly related to
the hull shape; the expression for the first-order slender-ship approxima-
tion thus only involves the Green function (not its gradient), which rep-
resents a significant simplification for numerical calculations. Partial
theoretical justification for this slender—ship approximation is presented
in [9] and in Noblesse and Triantafyllou [14] and Noblesse [15].

The first—order slender—-ship approximation can be used to determine
the wave resistance by integrating the pressure on the hull as is done in
[7] and [8] or by using the Havelock formula for evaluating the wave
energy radiated via the trailing wave pattern, as is recommended in [9]
and is done in Figure 1 in the present paper. As one would naturally
expect, either of these two methods for evaluating the wave resistance
using the first—order slender-ship approximation provides more realistic
predictions than the extremely-simple zeroth-order approximation. 1In
particular, Figure 1 shows that the large humps and hollows in the zeroth-
order approximation are greatly attenuated in the first-order approxima-
tion,

Numerical predictions of wave resistance, sectional vertical force,
sinkage and trim and pressure signature obtained using the first-order
slender-ship approximation and the Neumann-Kelvin theory are presented in
[7,8] for five hull forms (submerged prolate spheroid, Wigley parabolic
hull, HSVA tanker, Friesland class destroyer, cruiser) for which experi-
mental data are available. Good agreement is found among the experimental
data and the numerical predictions based on the Neumann—Kelvin theory and
the slender—ship approximation. In particular, the predictions obtained
in [7,8] using the Neumann—Kelvin theory and the considerably simpler
slender-ship approximation are consistently close to ome another.

Numerical predictions obtained using twelve computer codes (five codes
based on the Neumann-Kelvin theory and seven Rankine-source codes) were
compared to data from model experiments for two ship hulls (a high speed
destroyer-type hull with a transom stern and a tug boat) at three Froude
numbers each at the Workshop on Kelvin Wake Computations [16]. Three com-
plementary aspects of the Kelvin wake were considered for evaluating the
numerical predictions, namely the wave profile along a specified longitu-
dinal wave cut, the wave spectrum function and surface contours for the
wave elevation in an area extending three ship lengths behind the sterns
of the ship models. The numerical predictions were made without prior
knowledge of the experimental results. The numerical predictions obtained
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using the first-order slender-ship approximation were found "consistently
superior for both models at all speeds and in the three evaluation
categories” [16, pg.13], namely wave cuts, wave spectra and contour plots.
This finding is especially interesting because the slender-ship approxima-
tion is considerably simpler than the alternative calculation methods
(Neumann—Xelvin and Rankine-source codes) used at the Workshop. Contour
plots of the wave elevations computed using the first—order slender-ship
approximation for the two specified ship models and the three specified
Froude numbers are shown in Figure 5 in this present paper.

Numerical predictions obtained using the first-order slender-ship
approximation are presented and compared in Figures 1, 2a-c, 3 and 4a,b in
this paper for the Wigley hull and the Series 60 Cg = 0.60 ship model.
More precisely, Figure 1 depicts the wave resistance of the Wigley hull
predicted by both the zeroth—order and the first-order approximatiouns.
Figures 2a-c depict the far-field wave spectrum function| A(e)l 2 and its
real and imaginary parts C(6) and S(8) predicted by both the zeroth- and
first-order approximations for the Wigley hull at six values of the Froude
number. Finally, Figures 3 and 4a,b depict the wave profiles along the
Wigley hull at six values of the Froude number and along the Series 60
Cg = 0.60 model at twelve values of the Froude number, respectively.

Figure 1 shows that the zeroth-order and the first-order approxima-
tions to the wave resistance differ significantly. More precisely, the
pronounced humps and hollows in the zeroth-order wave-resistance curve are
greatly reduced in the first-order approximation, as was already noted.
This attenuation of the humps and hollows in the wave-resistance curve is
in accordance with the experimental data. It may be seen from Figure 2a
that differences between the zeroth—-order and the first—order approxima-
tions to the wave-spectrum function | A(8) | 2 are relatively insignificant
for small and moderate values of 0, say for values of 6 smaller than about
40°, corresponding to the long waves in the spectrum; however, the first-
order approximation is significantly larger than the zeroth-order approxi-
mation for larger values of 8, corresponding to the shorter waves in the
spectrum, in accordance with the experimental data. The numerical
predictions and the experimental data for small and moderate values of 6
are in relatively good agreement for some values of the Froude number
(notably for F = 0,250 and F = 0.316) but significant discrepancies exist
for other values of the Froude number; thus, there is a lack of consist-
ency. Discrepancies between the numerical predictions and the experimental
data are significantly larger in Figures 2b,c corresponding to the imagi-
nary and real parts of the function A(6) than in Figure 2a corresponding
to the functionl A(e)l 2,

The first-order slender-ship approximation to the wave profile is in
better agreement with the experimental data in Figures 4a,b than in Figure
3 corresponding to the Series 60 Cg = 0.60 ship model and the Wigley hull,
respectively. Discrepancies between the numerical predictions and the
experimental data are fairly important for the Wigley hull, including a
significant underprediction of the amplitude of the bow wave and an
appreciable phase shift. It is interesting that Figures 6.6, 6.7 and 6.8
in Jensen [17] show similar discrepancies between the experimental wave
profile along the Wigley hull and the profile computed using a Rankine-
source method in which the nonlinear free-surface boundary condition is
used. Figures 6.17, 6.18, 6.19 and 6.20 in [17] also show better agree-
ment between the experimental and predicted wave profiles for the Series
60 Cg = 0.60 model than for the Wigley hull. The wave profiles for the
Wigley hull and the Series 60 Cg = 0.60 model computed in [17] do not
appear to be in significantly better agreement with the experimental data
than those predicted using the considerably simpler slender-ship approxi-
mation and depicted in Figures 3 and 4a,b in the present paper.
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CONCLUSION

A major recommendation of the first—order slender-ship approximation
resides in 1ts great simplicity. More precisely, this approximation
defines the velocity potential explicitly in terms of the value of the
Froude number (that is, the ship speed and length) and the hull shape.
This expression for the potential is valid at any point on the hull sur-
face and in the fluid and thus provides an explicit approximation to the
near-field flow and the far-field waves. The expression for the first-
order slender-ship approximation is defined in terms of a source-
distribution alone, with density explicitly related to the hull shape, and
thus only involves the Green function (not its gradient), which represents
a significant simplification for numerical calculations.

Another important recommendation of the first—order slender-ship
approximation is that it yields numerical predictions which are not
necessarily inferior to those provided by considerably more complex
numerical methods. Thus, the discrepancies between the experimental wave
profiles along the Wigley hull and the Series 60 Cg = 0.60 model and the
numerical profiles reported in [17] and in Figures 3 and 4a,b in the pre-
sent paper are comparable. As a matter of fact, the numerical predictions
obtained using the first-order slender—-ship approximation were found in
[16] to be consistently superior to the corresponding predictions obtained
using both Neumann—Xelvin codes and Rankine-source codes. This surprising
finding is likely to be due to the considerable difficulties of obtaining
reliable numerical predictions using complex numerical methods. For
instance, it was recently shown by Scragg and Talcott [18].that their
Neumann-XKelvin numerical predictions do not converge with decreasing panel
size for a hull form having flare.

The first-order slender-ship approximation thus provides a simple
and efficient design tool which may be useful for a broad range of prac-
tical applications. It may also be valuable as a research tool for per-
forming systematic numerical calculations aimed at investigating various
aspects of steady free-surface flow about a ship. Finally, the slender-
ship approximation provides a solid starting point for developing a more
refined numerical method in which the boundary conditions at the hull
surface and at the free surface are satisfied more accurately.
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Figure 1 - Wave-resistance coefficients C (residuary resistance)
and C (wave pattern analysis) for the Wigley hull. The hull is held
fixedw%no sinkage and trim). The experimental data are those collected
under the Cooperative Experimental Program of the Resistance Committee
of the International Towing Tank Conference and reported in [1]. The
numerical predictions correspond to the zeroth-order (dotted line) and
the first-order (solid line) slender-ship approximations. The strong
humps and hollows in the zeroth-order approximation are greatly
attenuated in the first-order approximation.
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3Figure 23 - The far-field wave-amplitude (spectrum) function
10 | A(e)l for the Wigley hull at 6 values of the Froude number
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Figure 2b - (top part of next page) — The imaginary part 102 s(e)
of the wave—amplitude function.

Figure 2c - (bottom of next page) - The real part 102 C(8) of the
wave—amplitude function.

In these three figures, the Wigley hull is held fixed (no sinkage
and trim), the experimental data are those obtained at the University
of Tokyo and the Ship Research Institute and reported in [1]. The
numerical predictions correspond to the zeroth-order (dotted line) and
first-order (solid line) slender-ship approximations. Agreement
between the experimental data and the numerical predictions is
significantly better for the functionl A(e)| 2 than for its real and
imaginary parts C(8) and S(8).
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Figure 3 - Wave profiles along the Wigley hull for 6 values of the
Froude number between 0.250 and 0.408. The hull is held fixed (no
sinkage and trim). The experimental data are those obtained at the
University of Tokyo (*) and the Ship Research Institute (x) and
reported in [1]. The numerical predictions (solid line) correspond to
the first-order slender ship approximation. The amplitude of the bow
wave is significantly underpredicted and there is an appreciable phase
shift between the experimental and theoretical wave profiles.
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Figure 4a - Wave profiles along the Series 60 CB = 0.60 hull form
for 6 values of the Froude number between 0.18 and 0.25. The hull is
held fixed (no sinkage and trim). The experimental data are those
collected under the Cooperative Experimental Program of the Resistance
Committee of the International Towing Tank Conference and reported
in [1]. The numerical predictions (solid line) correspond to the
first-order slender-ship approximation. Agreement between the experi-
mental data and the numerical predictions is better for the Series 60
model than for the Wigley hull.
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Figure 4b - Wave profiles along the Series 60 C, = 0.60 hull form
for 6 values of the Froude number between 0.26 and 0.36. See Figure
4a for further explanationms.

Figure 5 - (next page) - Wave patterns computed using the first-
order slender-ship approximation for the two ship models and the three
values of the Froude considered at the Workshop on Kelvin Wake
Computations held at DTRC in January 1988.
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