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Résumé 

 

Différentes formulations du problème au deuxième ordre ont été proposé dans la littérature. A 

cause des différentes notations, description des mouvements, systèmes de coordonnées, points de 

référence pour le calcul des moments …, les différentes formulations ont l’air assez différentes et 

quelques malentendus quant à leur interprétation semblent persister. Le but de ce papier est de 

comparer les différentes formulations avec l’idée qu’il existe une seule théorie de deuxième ordre et 

toutes les formulations doivent être parfaitement les mêmes. 

 

 

Summary 

 

There exist different formulations of the 2nd order wave body interaction problem which have 

been proposed in the past. Due to the different notations, description of motions, referent coordinate 

systems, reference points for the calculation of the external moments …, the different formulations 

look sometimes quite different and some misunderstandings in their interpretations seems to persist. 

The main purpose of this note is to review and compare the different formulations, the basic idea 

being that there exists only one good formulation and all the different formulations (if they are 

correct) should be perfectly equivalent  
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1 Introduction 
When formulating the second order problem there are different technical issues to be considered and the following four 

are probably the most important 

 

1. Description of the body motions 

2. Evaluation of the loads 

3. Formulation of the Boundary Value Problem (BVP) 

4. Solution of the motion equation 

2 Description of the body motions 

2.1 Few comments on notations 

The compact matrix notations are introduced where [𝑨] is used to denote the 𝑛 × 𝑚 matrix with the elements 𝐴𝑖𝑗  , (𝑖 =

1, 𝑛 ; 𝑗 = 1,𝑚). At the same time, any vector quantity 𝒂 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 is written as a single column matrix {𝒂}. 

Finally, to each vector quantity, the skew symmetric matrix [𝒂] is associated as follows: 

 

{𝒂} = {

𝑎𝑥
𝑎𝑦
𝑎𝑧
}     ,     [𝒂] = [

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

] (1) 

 

These notations allow writing the scalar and vector product of two vectors {𝒂} and {𝒃} as: 

 

𝒂 ∙ 𝒃 = {𝒂}𝑇{𝒃}     ,     𝒂 ∧ 𝒃 = [𝒂]{𝒃} (2) 

 

These notations, as well as the description of the nonlinear body dynamics, are inspired by the work of Shabana [6]. 

2.2 Coordinate systems 

Reference is made to Figure 1 where the two coordinate systems are defined: 

 

• (𝑂, 𝑥, 𝑦, 𝑧) Earth fixed inertial coordinate system with arbitrary origin 

• (𝐺, 𝑥′, 𝑦′, 𝑧′) Body fixed coordinate system with the origin at the body center of gravity 

 

 
 

Figure 1: Rigid body motion and the different coordinate systems. 

 

Two sets of coordinates (𝑂, 𝑥, 𝑦, 𝑧) and (𝐺, 𝑥′, 𝑦′, 𝑧′) are related to each other through the transformation matrix [𝑨], so 

that for any vector quantity {𝒖} defined in (𝑂, 𝑥, 𝑦, 𝑧), the following relation is valid: 

 
{𝒖} = [𝑨]{𝒖′} (3) 

 

In the case of rigid body we have {𝒖′} = {𝒖0} so that: 

 
{𝒖} = [𝑨]{𝒖0} (4) 

 

Finally we also note that in the case of rigid body we have {𝒏′} = {𝒏0}. 
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2.3 Nonlinear rigid body motions 

The nonlinear rigid body motions are described by the following position, velocity and the acceleration vectors: 

 
{𝒓} = {𝒓𝐺} + [𝑨]{𝒖0} (5) 

   
{𝒗} = {𝒗𝐺} + [�̇�]{𝒖0} = {𝒗𝐺} + [𝛀]{𝒖} (6) 

   
{𝒂} = {𝒂𝐺} + [�̈�]{𝒖0} = {𝒂𝐺} + [�̇�]{𝒖} + [𝛀][𝛀]{𝒖} (7) 

 

where {𝒓𝐺}, {𝒗𝐺} and {𝒂𝐺} are the position, velocity and acceleration of the center of gravity and {𝛀} is the 

instantaneous rotational velocity vector. 

The transformation matrix [𝑨] and the instantaneous rotational velocity vector {𝛀} are related to each other by the 

following relation: 

 

[𝛀] = [�̇�][𝑨]𝑇 (8) 

2.4 Transformation matrix using the Euler angles 

There exists many possibilities to describe the instantaneous position and the orientation of the body. Most common 

way is to define it by the instantaneous position of the body center of gravity {𝒓𝐺} and the instantaneous rotations 

angles of the body fixed coordinate system (Euler angles) {𝜽}: 
 

{𝒓𝐺} = {

𝑥𝐺
𝑦𝐺
𝑧𝐺
}        ,        {𝜽} = {

𝜃𝑥
𝜃𝑦
𝜃𝑧

} (9) 

The transformation matrix is obtained by combining the elementary rotations around the different coordinate axis: 

 

[𝑨1] = [

1 0 0
0 cos 𝜃𝑥 −sin 𝜃𝑥
0 sin 𝜃𝑥 cos 𝜃𝑥

] [𝑨2] = [

cos 𝜃𝑦 0 sin 𝜃𝑦
0 1 0

− sin 𝜃𝑦 0 cos 𝜃𝑦

] [𝑨3] = [
cos 𝜃𝑧 −sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0
0 0 1

] 

 
Table 1 :Elementary rotation matrices (roll, pitch and yaw from left to right) 

 

Depending on the choice of the elementary rotation axis and their order of application, there exist 12 different 

possibilities to define the Euler angles. Here we use the so called 𝑧𝑦𝑥 or “321” convention which gives: 

 
[𝑨] = [𝑨]321 = [𝑨3][𝑨2][𝑨1]  

   

= [

cos 𝜃𝑧 cos 𝜃𝑦 −sin 𝜃𝑧 cos 𝜃𝑥 + cos 𝜃𝑧 sin 𝜃𝑦 sin 𝜃𝑥 sin 𝜃𝑧 sin 𝜃𝑥 + cos 𝜃𝑧 sin 𝜃𝑦 cos 𝜃𝑥
sin 𝜃𝑧 cos 𝜃𝑦 cos 𝜃𝑧 cos 𝜃𝑥 + sin 𝜃𝑧 sin 𝜃𝑦 sin 𝜃𝑥 −cos 𝜃𝑧 sin 𝜃𝑥 + sin 𝜃𝑧 sin 𝜃𝑦 cos 𝜃𝑥
−sin 𝜃𝑦 cos 𝜃𝑦 sin 𝜃𝑥 cos 𝜃𝑦 cos 𝜃𝑥

] (10) 

2.5 Rotational velocity vector 

Since the Euler rotations are performed about the instantaneous coordinate axis, the instantaneous rotation velocity 

vector {𝛀} is not simple derivative of the rotation angles but the following relation is valid: 

 

{𝛀}  = [𝐆]{�̇�}          ,          [𝐆] = [

cos 𝜃𝑧 cos 𝜃𝑦 −sin 𝜃𝑧 0

sin 𝜃𝑧 cos 𝜃𝑦 cos 𝜃𝑧 0

− sin 𝜃𝑦 0 1
] (11) 

2.6 Body kinematics at different orders 

The body motion is described by the translation of the body center of gravity {𝒓𝐺} − {𝒓𝐺0} and the instantaneous 

rotation angles {𝜽} around the center of gravity. These quantities are developed into the perturbation series up to second 

order as follows: 

 

{𝒓𝐺} − {𝒓𝐺0} = 𝜀{𝒓𝐺
(1)} + 𝜀2{𝒓𝐺

(2)}     ,     {𝜽} = 𝜀{𝜽(1)} + 𝜀2{𝜽(2)} (12) 

 

where {𝒓𝐺0} = {𝑥𝐺
(0) 𝑦𝐺

(0) 𝑧𝐺
(0)}

𝑇
, see Figure 1. 

 

With these notations, the perturbation series for the different kinematic quantities can be deduced as follows: 
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• Transformation matrix [𝑨] 
 

[𝑨] = [ 𝐈 ] + 𝜀[𝑨(1)] + 𝜀2[𝑨(2)] (13) 

 

where [ 𝐈 ] is the identity matrix (all terms zero except the diagonal elements equal to 1). 

Whatever the convention used for the definition of the Euler angles, the transformation matrix at first two order takes 

always the following form: 

 

[𝑨(1)] = [𝜽(1)]     ,     [𝑨(2)] = [𝜽(2)] −
1

2
([𝑯]𝑆 + [𝑯]𝐴𝑆) = [𝜽

(2)] −
1

2
[𝓗] (14) 

 

where [𝑯]𝑆 is the symmetric matrix given by: 

 

[𝑯]𝑆 =

[
 
 
 
 𝜃𝑧

(1)2 + 𝜃𝑦
(1)2 −𝜃𝑦

(1)𝜃𝑥
(1) −𝜃𝑧

(1)𝜃𝑥
(1)

−𝜃𝑦
(1)𝜃𝑥

(1) 𝜃𝑧
(1)2 + 𝜃𝑥

(1)2 −𝜃𝑧
(1)𝜃𝑦

(1)

−𝜃𝑧
(1)𝜃𝑥

(1) −𝜃𝑧
(1)𝜃𝑦

(1) 𝜃𝑦
(1)2 + 𝜃𝑥

(1)2

]
 
 
 
 

 (15) 

 

The matrix [𝑯]𝐴𝑆 is the skew symmetric matrix, which elements depend on the convention which is used. Within the 

convention adopted here “321” we have: 

 

[𝑯]𝐴𝑆 =

[
 
 
 0 𝜃𝑦

(1)𝜃𝑥
(1) 𝜃𝑧

(1)𝜃𝑥
(1)

−𝜃𝑦
(1)𝜃𝑥

(1) 0 𝜃𝑧
(1)𝜃𝑦

(1)

−𝜃𝑧
(1)𝜃𝑥

(1) −𝜃𝑧
(1)𝜃𝑦

(1) 0 ]
 
 
 

 (16) 

 

It is interesting to observe that the symmetric matrix [𝑯]𝑆 can also be written as: 

 

[𝑯]𝑆 = −[𝜽(1)][𝜽(1)] (17) 

 

which follows from the fact that: 

 

[𝑨]𝑇[𝑨] = [ 𝐈 ] (18) 

 

• Rotational velocity vector {𝛀} and its time derivative {�̇�} 

 

{𝛀} = 𝜀{𝛀(1)} + 𝜀2{𝛀(2)}     ,    {�̇�} = 𝜀{�̇�(1)} + 𝜀2{�̇�(2)} (19) 

with: 

 

{𝛀(1)} = {�̇�(1)} , {𝛀(2)} = {�̇�(2)} + [𝐆(1)]{�̇�(1)} (20) 

    
{�̇�(1)} = {�̈�(1)} , {�̇�(2)} = {�̈�(2)} + [�̇�(1)]{�̇�(1)} + [𝐆(1)]{�̈�(1)} (21) 

 

and [𝐆(1)] is given by: 

[𝐆(1)] = [

0 −𝜃𝑧
(1) 0

𝜃𝑧
(1) 0 0

−𝜃𝑦
(1) 0 0

] (22) 

 

• Normal vector {𝒏}, local displacement {𝒓} − {𝒓0} and local velocity {𝒗} 
 

{𝒏} = {𝒏0} + 𝜀{𝒏
(1)} + 𝜀2{𝒏(2)}   ,     {𝒓} − {𝒓𝟎} = 𝜀{𝒓(1)} + 𝜀2{𝒓(2)}   ,     {𝒗} = 𝜀{𝒗(1)} + 𝜀2{𝒗(2)} (23) 

 

where: 

 

{𝒏(1)} = [𝑨(1)]{𝒏0} (24) 

   
{𝒓(1)} = {𝒓𝐺

(1)} + [𝑨(1)]{𝒖0} (25) 

   
{𝒗(1)} = {�̇�𝐺

(1)} + [�̇�(1)]{𝒖0} (26) 
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{𝒏(2)} = [𝑨(2)]{𝒏0} (27) 

   
{𝒓(2)} = {𝒓𝐺

(2)} + [𝑨(2)]{𝒖0} (28) 

   
{𝒗(2)} = {�̇�𝐺

(2)} + [�̇�(2)]{𝒖0} (29) 

 

• Compact normal vector {ℕ} 
 

The compact normal vector allows for describing both the external forces and moments within the same formalism. It is 

defined by the following 6 dimensional vector: 

 

{ℕ} = {
{𝒏}

[𝒖]{𝒏}
} = [𝑨] {

{𝒏0}

[𝒖0]{𝒏0}
} (30) 

 

where it is understood that the matrix [𝑨] multiplies both the {𝒏0} and [𝒖0]{𝒏0}. 
Up to second order we can write: 

 

{ℕ} = {ℕ(0)} + 𝜀{ℕ(1)} + 𝜀2{ℕ(2)} (31) 

 

where: 

 

{ℕ(0)} = {
{𝒏0}

[𝒖0]{𝒏0}
}     ,     {ℕ(1)} = [𝑨(1)] {

{𝒏0}

[𝒖0]{𝒏0}
}     ,     {ℕ(2)} = [𝑨(2)] {

{𝒏0}

[𝒖0]{𝒏0}
} (32) 

3 External loads 

3.1 Basic principles 

The total external loading is composed of the gravity loading and the pressure loading and we formally write: 

 

{𝓕} = {𝓕𝑔} + {𝓕ℎ} (33) 

 

Most often in the literature, the external loading is expressed relative to the earth fixed coordinate system (𝑂, 𝑥, 𝑦, 𝑧) . In 

that case the gravity force is constant and of the order 𝑂(1). Furthermore, when the reference point for the calculation 

of the external moment is chosen to be the center of gravity, the moment due to the gravity is zero. That is not the case 

when the formulation relative to the body fixed coordinate system is used. 

 

 
 

Figure 2: Instantaneous wetted body surface and its separation into the different integration surfaces. 

 

3.2 Gravity loads 

When expressed relative to the earth fixed coordinate system, the gravity loading is of order 𝑂(1) and is given by: 

 

{𝓕𝑔} = −𝑚𝑔 {
{𝒌}

{𝟎}
} (34) 
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3.3 Nonlinear pressure loads 

The fully nonlinear pressure loads are obtained by the integration of the pressure over the instantaneous wetted body 

surface 𝑆𝐵, and they are written in the compact form as follows: 

 

{𝓕ℎ} = {
{𝑭ℎ}

{𝑴ℎ}
} = ∬ 𝑃{ℕ}𝑑𝑆

𝑆𝐵

 (35) 

 

The initial and the instantaneous position and the wetted surface of the body are shown in Figure 2, where the inertial 

coordinate system (𝑂, 𝑥, 𝑦, 𝑧) is placed at the mean free surface. This coordinate system is sometimes also called the 

hydrodynamic coordinate system since the fluid pressure is defined with respect to it. As already mentioned, the 

pressure loads are also expressed in the hydrodynamic coordinate system. 

The pressure to be used in (35) is given by the Bernoulli’s equation, and is decomposed into its dynamic and the 

hydrostatic part: 

 

𝑃 = −𝜚 [
∂Φ

𝜕𝑡
+
1

2
(∇Φ)2 + 𝑔𝑧] = 𝑃𝑑 − 𝜚𝑔𝑧 (36) 

 

Similarly, the total pressure loading is also decomposed in two parts as follows: 

 

{𝓕ℎ} = {𝓕ℎ𝑑} + {𝓕ℎ𝑠} (37) 

 

with: 

 

{𝓕ℎ𝑑} = −𝜚∬ [
∂Φ

𝜕𝑡
+
1

2
(∇Φ)2] {ℕ}𝑑𝑆

𝑆𝐵

     ,     {𝓕ℎ𝑠} = −𝜚𝑔∬ 𝑧{ℕ}𝑑𝑆
𝑆𝐵

 (38) 

3.4 Pressure at different orders 

• Dynamic pressure component 𝑃𝑑 

 

𝑃𝑑 = −𝜚 [
∂Φ

𝜕𝑡
+
1

2
(∇Φ)2] = 𝜀𝑃(1) + 𝜀2𝑃(2) (39) 

with: 

𝑃(1) = −𝜚
∂Φ(1)

𝜕𝑡
     ,     𝑃(2) = −𝜚

∂Φ(2)

𝜕𝑡
−
1

2
𝜚{∇Φ(1)}

2
− 𝜚 ({𝒓(1)}

𝑇
{∇})

∂Φ(1)

𝜕𝑡
 (40) 

 

where {𝒓(1)} is the displacement vector of the point attached to the body (25). 

 

• Hydrostatic pressure component −𝜚𝑔𝑧 

 

−𝜚𝑔𝑧 = −𝜚𝑔{𝒓}𝑻{𝒌} = −𝜚𝑔(𝑧(0) + 𝜀𝑧(1) + 𝜀2𝑧(2)) (41) 

 

where: 

 

𝑧(0) = {𝒌}𝑇({𝒓𝐺0} + {𝒖0}) = 𝑧𝐺
(0) + 𝑧0 (42) 

   
𝑧(1) = {𝒌}𝑇{𝒓(1)} = 𝑧𝐺

(1) + 𝜃𝑥
(1)𝑦0 − 𝜃𝑦

(1)𝑥0 (43) 

   

𝑧(2) = {𝒌}𝑇{𝒓(2)} = 𝑧𝐺
(2) + 𝜃𝑥

(2)𝑦0 − 𝜃𝑦
(2)𝑥0 −

1

2
[ℋ31𝑥0 +ℋ32𝑦0 +ℋ33𝑧0] (44) 

 

We note that the free surface is defined by 𝑧(0) = 0 so that we have: 

 

𝑧0|𝑆𝐹0 = −𝑧𝐺
(0)

 (45) 
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4 Direct formulation of the external loading 

4.1 Introduction 

First we formally decompose the nonlinear pressure loading (35) into perturbation series up to second order: 

 

{𝓕ℎ} = {𝓕ℎ(0)} + 𝜀{𝓕ℎ(1)} + 𝜀2{𝓕ℎ(2)} (46) 

 

The direct formulation means that we simply introduce the different perturbation series for the pressure, normal vector 

and the wetted body surface into the original expression (35) and we collect the terms of different orders of magnitude. 

This is usually done separately for the pure dynamic pressure contribution and the hydrostatic pressure contribution 

(38). 

In order to be able to decompose the pressure loads at different orders, it is necessary to develop the instantaneous 

wetted body surface 𝑆𝐵 into different orders of magnitude. Reference is made to Figure 2 and the instantaneous wetted 

body surface is decomposed into its mean component 𝑆𝐵0 and the perturbed part 𝛿𝑆𝐵: 

 

𝑆𝐵 = 𝑆𝐵0 + 𝜀(𝛿𝑆𝐵1 + 𝛿𝑆𝐵2) = 𝑆𝐵0 + 𝜀𝛿𝑆𝐵 (47) 

 

The surfaces 𝛿𝑆𝐵1 and 𝛿𝑆𝐵2 are both of the order 𝜀 and they are separated here because some authors perform the 

integration of the hydrostatic part, separately on 𝛿𝑆𝐵1  (calm water) and 𝛿𝑆𝐵2. Note that there is no need to look for the 

higher order terms in the description of the wetted body surface, because the pressure integration over the higher order 

parts will give the loading contributions of the order higher than 𝜀2. Furthermore, the integrals over the perturbed 

wetted body surfaces can be expressed in the form of the line integral over the mean waterline 𝐶𝐵0 , as it will be 

discussed later. 

4.2 Pure hydrodynamic contribution 

The pure hydrodynamic contribution {𝓕ℎ𝑑}, at first two orders, is formally written as: 

 

{𝓕ℎ𝑑} = −𝜚∬ [
∂Φ

𝜕𝑡
+
1

2
(∇Φ)2] {ℕ}𝑑𝑆

𝑆𝐵0+𝛿𝑆𝐵

= 𝜀{𝓕ℎ𝑑(1)} + 𝜀2{𝓕ℎ𝑑(2)} (48) 

 

Within the direct formulation, the integration over the perturbed wetted body surface is performed directly over the total 

perturbed surface 𝛿𝑆𝐵. Up to second order we get: 

 

{𝓕ℎ𝑑(1)} = ∬ 𝑃(1){ℕ(0)}𝑑𝑆
𝑆𝐵0

 (49) 

   

{𝓕ℎ𝑑(2)} = ∬ (𝑃(2){ℕ(0)} + 𝑃(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∫ Ξ(1)(Ξ(1) − 𝑧(1))
𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 (50) 

4.3 Hydrostatic contribution 

The hydrostatic contribution is given by: 

 

{𝓕ℎ𝑠} = −𝜚𝑔∬ 𝑧{ℕ}𝑑𝑆
𝑆𝐵0+𝛿𝑆𝐵

= {𝓕ℎ𝑠(0)} + 𝜀{𝓕ℎ𝑠(1)} + 𝜀2{𝓕ℎ𝑠(2)} (51) 

 

Within the direct formulation of the second order loads, the integration of the hydrostatic pressure over the perturbed 

wetted body surface is also performed at once i.e. over 𝛿𝑆𝐵 directly. The following expressions are obtained at different 

orders 
 

{𝓕ℎ𝑠(0)} =  −𝜚𝑔∬ 𝑧(0){ℕ(0)}𝑑𝑆
𝑆𝐵0

= 𝜚𝑔𝑉 {
{𝒌}

{𝟎}
} (52) 

   

{𝓕ℎ𝑠(1)} =  −𝜚𝑔∬ (𝑧(1){ℕ(0)} + 𝑧(0){ℕ(1)})𝑑𝑆
𝑆𝐵0

 (53) 

   

{𝓕ℎ𝑠(2)} =  −𝜚𝑔∬ (𝑧(2){ℕ(0)} + 𝑧(0){ℕ(2)} + 𝑧(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

−
1

2
𝜚𝑔∫ [(Ξ(1))

2
− (z(1))

2
]

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 

  (54) 
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4.4 Total pressure loading 

The total pressure loading is obtained by simple summation and the final result is: 

 

{𝓕ℎ(0)} =  −𝜚𝑔∬ 𝑧(0){ℕ(0)}𝑑𝑆
𝑆𝐵0

 (55) 

   

{𝓕ℎ(1)} =  ∬ 𝑃(1){ℕ(0)}𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ (𝑧(1){ℕ(0)} + 𝑧(0){ℕ(1)})𝑑𝑆
𝑆𝐵0

 (56) 

   

{𝓕ℎ(2)} =  ∬ (𝑃(2){ℕ(0)} + 𝑃(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ (𝑧(2){ℕ(0)} + 𝑧(0){ℕ(2)} + 𝑧(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

  

   

 +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 (57) 

4.5 Total external loading 

In order to calculate the total loading the gravity loading (34), needs to be added to the pressure loading. The total 

external loading at the different orders of magnitude becomes: 

 

{𝓕(0)} =  {
{𝟎}

{𝟎}
} (58) 

   

{𝓕(1)} =  ∬ 𝑃(1){ℕ(0)}𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ (𝑧(1){ℕ(0)} + 𝑧(0){ℕ(1)})𝑑𝑆
𝑆𝐵0

 (59) 

   

{𝓕(2)} =  ∬ (𝑃(2){ℕ(0)} + 𝑃(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ (𝑧(2){ℕ(0)} + 𝑧(0){ℕ(2)} + 𝑧(1){ℕ(1)})𝑑𝑆
𝑆𝐵0

  

   

 +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 (60) 

 

It is interesting to note that the first and second order loadings can also be rewritten as: 

 

{𝓕(1)} = [𝑨(1)]{𝓕ℎ(0)} +∬ (𝑃(1) − 𝜚𝑔𝑧(1)){ℕ(0)}𝑑𝑆
𝑆𝐵0

 (61) 

   

{𝓕(2)} = [𝑨(2)]{𝓕ℎ(0)} + [𝑨(1)]{𝓕(1)} +∬ (𝑃(2) − 𝜚𝑔𝑧(2)){ℕ(0)}𝑑𝑆
𝑆𝐵0

+
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 

  (62) 
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5 External forces by other formulations 
The direct formulation considers the forces and moments at the same time using the compact notations. Usually in the 

literature, the forces and the moments are considered separately, and we do the same here. 

5.1 Molin & Marion [3] 

The final expressions for the total pressure forces are: 

 

 
 

 
Figure 3: Total pressure force by Molin & Marion (1985). 

 

The description of the nonlinear body motion is such that the antisymmetric part of the second order transformation 

matrix [𝑨(2)] is zero i.e. [𝑯]𝐴𝑆 = 0. The exact derivation of the above expressions for the forces is discussed below 

using the present notations. 

5.1.1 Pure hydrodynamic contribution 

The pure hydrodynamic contribution is calculated in exactly the same way as within the direct formulation. 

5.1.2 Hydrostatic contribution 

The total hydrostatic contribution is first decomposed in two parts: 

 

{𝑭ℎ𝑠} = {𝑭ℎ𝑠0} + {𝑭ℎ𝑠Ξ} (63) 

 

where {𝑭ℎ𝑠0} represents the contribution in calm water and {𝑭ℎ𝑠Ξ} is the remaining part: 

 

{𝑭ℎ𝑠0} = −𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝑆𝐵0+𝛿𝑆𝐵1

     ,     {𝑭ℎ𝑠Ξ} = −𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝛿𝑆𝐵2

 (64) 

 

The contribution {𝑭ℎ𝑠Ξ} is of second order and is given by: 

 

{𝑭ℎ𝑠Ξ(2)} = −𝜚𝑔
1

2
∫ (Ξ(1))

2

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶 (65) 

 

The pure hydrostatic contribution in calm water {𝑭ℎ𝑠0} is further rewritten as: 
 

{𝑭ℎ𝑠0} = −𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝑆𝐵0±𝑆𝐹𝑙0

+ 𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝛿𝑆𝐵1

  

   

= 𝜚𝑔𝑉{𝒌} + 𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔∬ 𝑧{𝒏}𝑑𝑆
𝛿𝑆𝐵1

 (66) 

 

where the use of the divergence theorem was made: 

 

∬ 𝑓{𝒏0}𝑑𝑆
𝑆𝐵0+𝑆𝐹𝑙0

= −∭∇𝑓𝑑𝑉
𝑉

 (67) 

 

Up to second order we have: 

 

{𝑭ℎ𝑠0} =  𝜚𝑔𝑉{𝒌} + 𝜀{𝑭ℎ𝑠0(1)}
𝑆𝐹𝑙0

+ 𝜀2 ({𝑭ℎ𝑠0(2)}
𝑆𝐹𝑙0

+ {𝑭ℎ𝑠0(2)}
𝛿𝑆𝐵1

) (68) 

where: 
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{𝑭ℎ𝑠0(1)}
𝑆𝐹𝑙0

= 𝜚𝑔∬ 𝑧(1){𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (69) 

   
{𝑭ℎ𝑠0(2)}

𝑆𝐹𝑙0
= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)]){𝒌}𝑑𝑆

𝑆𝐹𝑙0

 (70) 

   

{𝑭ℎ𝑠0(2)}
𝛿𝑆𝐵1

= 
1

2
𝜚𝑔∫ (z(1))

2

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶 (71) 

 

With this in mind the total contribution from the hydrostatic pressure −𝜚𝑔𝑧 at second order, becomes: 

 

{𝑭ℎ𝑠(2)} = {𝑭ℎ𝑠0(2)}
𝑆𝐹𝑙0

+ {𝑭ℎ𝑠0(2)}
𝛿𝑆𝐵1

+ {𝑭ℎ𝑠Ξ(2)}  

   

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)]){𝒌}𝑑𝑆
𝑆𝐹𝑙0

−
1

2
𝜚𝑔∫ [(Ξ(1))

2
− (z(1))

2
]

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶 (72) 

5.1.3 Total pressure forces – Expression 1 

The total pressure loading is obtained by summing up the hydrodynamic and the hydrostatic contributions: 

 

{𝑭ℎ(1)} = ∬ 𝑃(1){𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ 𝑧(1){𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (73) 

   

{𝑭ℎ(2)} = ∬ (𝑃(2){𝒏0} + 𝑃
(1){𝒏(1)})𝑑𝑆

𝑆𝐵0

+ 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)]){𝒌}𝑑𝑆
𝑆𝐹𝑙0

  

   

 +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶 (74) 

 

The total second order pressure force can also be rewritten as: 

 

{𝑭ℎ(2)} = ∬ 𝑃(2){𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ 𝑧(2){𝒌}𝑑𝑆
𝑆𝐹𝑙0

+ [𝜽(1)]{𝑭ℎ(1)} +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶 (75) 

5.1.4 Total pressure force – Expression 2 

In Molin & Marion the hydrostatic pressure contribution {𝑭ℎ𝑠0(2)} is further developed and written in the following 

form: 

 

{𝑭ℎ𝑠0(2)} = {𝑭ℎ𝑠0(2)}
𝛿𝑆𝐵1

+ {𝑭ℎ𝑠0(2)}
𝑆𝐹𝑙0

= −{𝒌}
1

2
𝜚𝑔∫ (𝑧(1))

2
tan 𝛾 𝑑𝐶

𝐶𝐵0

− 𝜚𝑔{𝒌}∬ 𝑧(2)𝑑𝑆
𝑆𝐹𝑙0

 (76) 

 

so that the total second order pressure force can be rewritten as: 

 

{𝓕ℎ(2)} = ∬ 𝑃(2){𝒏0}𝑑𝑆
𝑆𝐵0

+ [𝜽(1)]{𝓕ℎ𝑑(1)} + 𝜚𝑔∫ [
1

2
(Ξ(1))

2
− Ξ(1)𝑧(1)]

𝐶𝐵0

{𝒏0}

cos 𝛾
𝑑𝐶  

   

 −𝜚𝑔{𝒌} [∬ 𝑧(2)𝑑𝑆
𝑆𝐹𝑙0

+
1

2
∫ (𝑧(1))

2
tan 𝛾 𝑑𝐶

𝐶𝐵0

] (77) 

 

which is the expression (II-31) from Molin & Marion (see Figure 3 above). 

 

5.1.5 Comparisons: Direct vs Molin & Marion  

In order for the two formulations (57) and (75) to be equivalent, the following identity needs to be satisfied: 

 

−𝜚𝑔∬ (𝑧(2){𝒏0} + 𝑧
(0){𝒏(2)} + 𝑧(1){𝒏(1)})𝑑𝑆

𝑆𝐵0

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)]){𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (78) 
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Even if this identity follows directly from the use of the divergence theorem, here we demonstrate it by performing the 

inverse operation. For that purpose, the same transformation as in Molin & Marion is used, which means that we 

construct the closed volume 𝑆𝐵0 + 𝑆𝐹𝑙0  by adding and subtracting the integral over 𝑆𝐹𝑙0  to the integral on the left hand 

side of (78). The integral over 𝑆𝐵0 on the left-hand side of (78) is denoted by 𝐼𝐵0 and we write: 

 

𝐼𝐹0 = −𝜚𝑔∬ (𝑧(2){𝒏0} + 𝑧
(0){𝒏(2)} + 𝑧(1){𝒏(1)})𝑑𝑆

𝑆𝐵0±𝑆𝐹𝑙0

= 𝐼𝐹0
1 + 𝐼𝐹0

2  (79) 

 

where 𝐼𝐹0
1  is the integral over the closed volume and 𝐼𝐹0

2  is the integral over the waterplane area. 

Since 𝑧(0) is zero at 𝑆𝐹𝑙0 , it follows that: 

 

𝐼𝐹0
2 = 𝜚𝑔∬ (𝑧(2){𝒏0} + 𝑧

(0){𝒏(2)} + 𝑧(1){𝒏(1)})𝑑𝑆
𝑆𝐹𝑙0

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)]){𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (80) 

 

which is exactly the same as the integral at the left hand side of (78). 

This means that, in order for (78) to be valid, 𝐼𝐹0
1  should be equal to zero: 

 

𝐼𝐹0
1 = −𝜚𝑔∬ (𝑧(2){𝒏0} + 𝑧

(0){𝒏(2)} + 𝑧(1){𝒏(1)})𝑑𝑆
𝑆𝐵0+𝑆𝐹𝑙0

= 0 (81) 

 

To prove that we evaluate the different terms separately as follows: 

 

∬ 𝑧(2){𝒏0}𝑑𝑆
𝑆𝐵0+𝑆𝐹𝑙0

= −∭∇𝑧(2)𝑑𝑉
𝑉

= −(𝜃𝑥
(2){𝒋}− 𝜃𝑦

(2){𝒊}−
1

2
[ℋ31{𝒊}+ℋ32{𝒋}+ℋ33{𝒌}])𝑉 

  

∬ 𝑧(0) [𝑨
(2)
] {𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= ([𝜽(2)] −
1

2
[𝓗])∬ 𝑧(0){𝒏′}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= − ([𝜽(2)] −
1

2
[𝓗]) {𝒌}𝑉 

  
∬ 𝑧(1) [𝑨

(1)
] {𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

=∬ 𝑧(1) [𝜽
(1)
] {𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= − [𝜽
(1)
]∭∇𝑧(1)𝑑𝑉

𝑉

= − [𝜽
(1)
] (𝜃𝑥

(1){𝒋}− 𝜃𝑦
(1){𝒊})𝑉 

 

By noting that [𝓗]{𝒌} = ℋ13{𝒊} + ℋ23{𝒋} + ℋ33{𝒌} and after summing up all the contributions, we get: 

 

𝐼𝐹0
1 = 𝜚𝑔∬ ([𝜃𝑥

(1)𝜃𝑧
(1) +

1

2
(ℋ31 +ℋ13)] {𝒊} + [𝜃𝑦

(1)𝜃𝑧
(1) +

1

2
(ℋ32 +ℋ23)] {𝒋}) 𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= 0 (82) 

 

From the description of the body motion we can deduce the following identities: 

 

ℋ23 = −𝜃𝑧
(1)𝜃𝑦

(1) + 𝐻23   ,   ℋ13 = −𝜃𝑧
(1)𝜃𝑥

(1) +𝐻13   ,   ℋ32 = −𝜃𝑧
(1)𝜃𝑦

(1) − 𝐻23   ,   ℋ31 = −𝜃𝑧
(1)𝜃𝑥

(1) −𝐻13 

     (83) 

 

and it can be concluded that the identity (82) is satisfied. 
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5.2 Ogilvie [4] 

Similar to Molin & Marion, the forces and the moments are considered separately, and first we concentrate on the 

forces. The total hydrodynamic forces are given by the following expression: 

 

 
 

Figure 4: Total pressure force by Ogilvie (1984). 

 

Within the present notations we can rewrite the above expression in the following form: 

 

{𝓕ℎ(2)} = ∬ 𝑃(2){𝒏0}𝑑𝑆
𝑆𝐵0

+ [𝜽(1)]{𝓕ℎ𝑑(1)} + 𝜚𝑔∫ [
1

2
(Ξ(1))

2
− Ξ(1)𝑧(1)]

𝐶𝐵0

{𝒏0}𝑑𝐶 − 𝜚𝑔{𝒌}∬ 𝑧(2)𝑑𝑆
𝑆𝐹𝑙0

 

     (84) 

 

When compared to the expression (77) of Molin & Marion, the last term in (77) is missing here: 

 

−
1

2
𝜚𝑔{𝒌}∫ (𝑧(1))

2
tan 𝛾 𝑑𝐶

𝐶𝐵0

 (85) 

 

Another difference is that the term 1/cos 𝛾  , in the line integral, is also missing.  

Knowing that, for the wall-sided bodies, we have: 

 

cos 𝛾 = 1     ,     tan 𝛾 = 0 (86) 

 

it is concluded that the Ogilvie’s formulation is valid for the wall-sided bodies only. 
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5.3 Pinkster [5] 

Here again the forces and the moments are considered separately and the following expression is given for the forces: 

 

 
 

Figure 5: Total pressure force by Pinkster (1980). 

 

Within the present notations this can be rewritten as: 

 

{𝑭ℎ(2)} = ∬ 𝑃(2){𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ 𝑧(2){𝒌}𝑑𝑆
𝑆𝐹𝑙0

+ [𝜽(1)]{𝑭ℎ(1)} +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{𝒏0}𝑑𝐶 (87) 

 

This expression looks the same as the expression (75) from Molin & Marion, for wall-sided bodies. 

However, the definition of the second order vertical displacement is not the same (44), and here it is defined as: 

 

𝑧(2) = 𝑧𝐺
(2) + 𝜃𝑥

(2)𝑦0 − 𝜃𝑦
(2)𝑥0 (88) 

 

This means that the quadratic component [𝓗] of the second order transformation matrix [𝑨(2)] is taken to be zero in 

Pinkster’s formulation. This is an error. 
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5.4 Chen [1] 

Here also the forces and the moments are considered separately, but they are collected at the end into the compact 

generalized loading vector which includes both the forces and the moments. The notations are however different and the 

brackets [   ] are used to denote the generalized loading vector. Three coordinate systems are introduced: 

 

• (𝑜′, 𝑥′, 𝑦′, 𝑧′) absolute (earth fixed) coordinate system (origin at the free surface) 

• (𝑜, 𝑥, 𝑦, 𝑧) coordinate system parallel to absolute with the origin at the initial center of gravity 

• (𝑂, 𝑋, 𝑌, 𝑍) body fixed coordinate system with the origin at the center of gravity 

 

  
 

Figure 6: Coordinate systems and body motions in Chen’s description (from [1]). 

 

The equation of motion is written with respect to the instantaneous position of the center of gravity. However the 

external moments are defined with respect to the initial (mean) position of the center of gravity: 

 

 

(89) 

 

Before solving the motion equation the moments are transferred to the instantaneous position of the center of gravity. 

The hydrodynamic loading is decomposed into three components. The first two components are given by the 

expressions (90) and (91) below: 

 

 

(90) 

  

 

(91) 

 

where the generalized normal vector [𝐍] is introduced, in a similar way as in the direct approach, so that we have: 

 

[𝐍] = {
{𝐧0}

[𝐫0]{𝐧0}
} = {ℕ(0)} = {

{𝒏0}

[𝒖0]{𝒏0}
} (92) 

 

Within the present notations the sum of the two components (90) and (91) can be written as: 

 

[𝐅ex1]
(2) + [𝐅H]2

(2) = [𝑨(1)]{𝓕(1)} +∬ 𝑃(2){ℕ(0)}𝑑𝑆
𝑆𝐵0

+
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 (93) 

 

At the same time, the loading component which is induced by the hydrostatic pressure, is considered separately and the 

corresponding expression is given by the expression (94) below: 
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(94) 

 

However, it should be noted that the last two terms of [𝐅S]
(2) in (94) are already included in the expression for [𝐅ex1]

(2) 

(90) so that the total second order hydrodynamic loading {𝓕(2)} is written as: 

 

{𝓕(2)} = [𝐅ex1]
(2) + [𝐅H]2

(2) + [ 𝐊 ][𝐚](2) + [ 𝐊 ][�̃�] (95) 

 

In order for (95) to be valid the following identity should be true: 

 

[ 𝐊 ][𝐚](2) + [ 𝐊 ][�̃�] = −𝜚𝑔∬ (𝑧(2){ℕ(0)} + 𝑧(0){ℕ(2)})𝑑𝑆
𝑆𝐵0

= {𝓕𝐾} = {
{𝑭𝐾}

{𝑴𝐾}
} (96) 

 

where [ 𝐊 ] is the classical linear hydrostatic restoring matrix and: 

 

[𝐚](2) = {
{𝒓𝐺

(2)}

{𝜽(2)}
}     ,     [�̃�] =

1

2
{0 0 −𝑍𝑤 (𝜃𝑥

(1)2 + 𝜃𝑦
(1)2) 𝜃𝑧

(1)𝜃𝑦
(1) −𝜃𝑧

(1)𝜃𝑥
(1) 0}

𝑇

 (97) 

 

with 𝑍𝑤 denoting the vertical coordinate of the mean free surface in the earth fixed coordinate system which means the 

initial position of the center of gravity 𝑧𝐺
(0)

 within the present notations. 

With the help of the divergence theorem the following expressions can be deduced: 

 

{𝑭𝐾} = 𝜚𝑔∬ 𝑧(2){𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (98) 

   

{𝑴𝐾} = 𝜚𝑔∬ 𝑧(2)[𝒖0]{𝒌}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔𝑉𝑧𝐵
(0)({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} +
1

2
{
−ℋ32

ℋ31

0

}) (99) 

 

where the fact that, within the Chen’s formulation, the matrix [𝓗] is symmetric, was used and 𝑧𝐵
(0)

 denotes the initial 

position of the center of buoyancy. 

The above expressions are usually rewritten in the following form: 

 

{𝑭𝐾} = {

0
0

𝑧𝐺
(2)𝐾33 + 𝜃𝑥

(2)𝐾34 + 𝜃𝑦
(2)𝐾35

} +
1

2
{

0
0

𝑧𝐺
(0)ℋ33𝐾33 −ℋ32𝐾34 +ℋ31𝐾35

} (100) 

   

{𝑴𝐾} = {

𝑧𝐺
(2)𝐾34 + 𝜃𝑥

(2)𝐾44 + 𝜃𝑦
(2)𝐾45

𝑧𝐺
(2)𝐾35 + 𝜃𝑥

(2)𝐾45 + 𝜃𝑦
(2)𝐾55

0

} +
1

2
{
𝑧𝐺
(0)
ℋ33𝐾34 −ℋ32𝐾44 +ℋ31𝐾45

𝑧𝐺
(0)
ℋ33𝐾35 −ℋ32𝐾45 +ℋ31𝐾55

0

} (101) 

 

where the classical restoring coefficients 𝐾𝑖𝑗  were introduced. 

This allows writing the total generalized loading vector {𝓕𝐾} in the form: 

 

{𝓕𝐾} = [𝑲]{𝝃(2)} + [𝑲]{�̃�(2)} (102) 

where: 

 

{𝝃(2)} = {𝑥𝐺
(2) 𝑦𝐺

(2) 𝑧𝐺
(2) 𝜃𝑥

(2) 𝜃𝑦
(2) 𝜃𝑧

(2)}
𝑇
     ,     {�̃�(2)} =

1

2
{0 0 𝑧𝐺

(0)
ℋ33 −ℋ32 ℋ31 0}

𝑇
 

 (103) 

Knowing that, within the notations used by Chen [1] , we have: 

 

ℋ31 = −𝜃𝑧
(1)𝜃𝑥

(1)     ,     ℋ32 = −𝜃𝑧
(1)𝜃𝑦

(1)     ,     ℋ33 = 𝜃𝑦
(1)2 + 𝜃𝑥

(1)2
 (104) 

 

it can be concluded that the identity (96) is satisfied.  
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6 External moments 

6.1 Introduction 

Within the direct formulation of the external loading, the forces and the moments are considered together using the 

compact notations: 

{𝓕} = {
{𝑭}

{𝑴}
} (105) 

 

which leads to the generalized expressions at each order of magnitude, in relatively simple form (58),(59),(60). 

However, most often in the literature the forces and the moments are considered separately, and here we discuss the 

comparisons for the moments. We also note that the formulation proposed by Chen [1], where the same generalized 

notations are used  is not considered explicitly here. 

6.2 Choice of the reference point for the moments 

When considering the moments, the first convention to be agreed on, is the reference point for moment’s definition. The 

choice of this point is arbitrary. Since the motion equation is usually written with respect to the instantaneous position 

of the center of gravity, it seems natural to choose this point as the reference for the definition of the moments. 

However, some authors use the different points such as: origin of the inertial coordinate system, position of the initial 

center of gravity or some others. When expressed with respect to the center of gravity, the fully nonlinear pressure 

induced external moment is given by the following expression: 

 

{𝑴} = ∬ 𝑃[𝒖]{𝒏}𝑑𝑆
𝑆𝐵

 (106) 

 

Within the direct formulation, the reference point for the definition of the moments is the instantaneous position of the 

center of gravity. 

6.3 Molin & Marion [3] 

The final expressions of Molin & Marion’s formulation are shown in Figure 7 below. 

 

 
 

 

 
 

Figure 7: Hydrodynamic pressure moment by Molin & Marion. 

 

The reference point for the definition of the moments is the instantaneous position of the center of gravity. The above 

expressions are now discussed using the present notations. 
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6.3.1 Pure hydrodynamic contribution 

Similar to the forces, the pure hydrodynamic contribution is exactly the same as in the direct formulation and we recall 

it here: 

 

{𝑴ℎ𝑑(1)} = ∬ 𝑃(1)[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

 (107) 

   

{𝑴ℎ𝑑(2)} = ∬ (𝑃(2) + 𝑃(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∫ Ξ(1)(Ξ(1) − 𝑧(1))
𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (108) 

6.3.2 Hydrostatic contribution 

The total hydrostatic contribution is first decomposed in two parts: 

 

{𝑴ℎ𝑠} = {𝑴ℎ𝑠0} + {𝑴ℎ𝑠Ξ} (109) 

 

where {𝑴ℎ𝑠0} represents the contribution in calm water and {𝑴ℎ𝑠Ξ} is the remaining part: 

 

{𝑴ℎ𝑠0} = −𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝑆𝐵0+𝛿𝑆𝐵1

     ,     {𝑴ℎ𝑠Ξ} = −𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝛿𝑆𝐵2

 (110) 

 

The contribution {𝑴ℎ𝑠Ξ} is of second order and is given by: 

 

{𝑴ℎ𝑠Ξ(2)} = −𝜚𝑔
1

2
∫ (Ξ(1))

2

𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (111) 

 

The pure hydrostatic contribution in calm water {𝑴ℎ𝑠0} is further rewritten as: 

 

{𝑴ℎ𝑠0} = −𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝛿𝑆𝐵1

  

   

= 𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔∭ [𝛁](𝑧{𝒖})𝑑𝑉0
𝑉0

− 𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝛿𝑆𝐵1

 (112) 

 

where the use of the divergence theorem was made. 

 

The total pure hydrostatic contribution in calm water {𝑴ℎ𝑠0} is decomposed in three parts: 

 

{𝑴ℎ𝑠0} = {𝑴ℎ𝑠0}𝑆𝐹𝑙0 +
{𝑴ℎ𝑠0}𝑉 + {𝑴

ℎ𝑠0}𝛿𝑆𝐵1  (113) 

 

where {𝑴ℎ𝑠0}𝑆𝐹𝑙0  , {𝑴ℎ𝑠0}𝑉  and {𝑴ℎ𝑠0}𝛿𝑆𝐵1 are respectively, the first, second and third term in (112). 

 

• Component {𝑴ℎ𝑠0}𝑆𝐹𝑙0  

 

{𝑴ℎ𝑠0}𝑆𝐹𝑙0 = 𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝑆𝐹𝑙0

 (114) 

 

This can be developed as: 

 

{𝑴ℎ𝑠0}𝑆𝐹𝑙0 = 𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝑆𝐹𝑙0

= (1 + 𝜀[𝜽(1)])∬ (𝜀𝑧(1) + 𝜀2𝑧(2))[𝒖0]{𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (115) 

 

so that, at different orders we have: 

 

{𝑴ℎ𝑠0(1)}
𝑆𝐹𝑙0

= 𝜚𝑔∬ 𝑧(1)[𝒖0]{𝒌}𝑑𝑆
𝑆𝐹𝑙0

   ,     {𝑴ℎ𝑠0(2)}
𝑆𝐹𝑙0

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)])[𝒖0]{𝒌}𝑑𝑆
𝑆𝐹𝑙0

 (116) 

 

• Component {𝑴ℎ𝑠0}𝑉 
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This component can be written as: 

 

{𝑴ℎ𝑠0}𝑉 = −𝜚𝑔∭ [𝛁](𝑧{𝒖})𝑑𝑉0
𝑉0

= −𝜚𝑔𝑉𝑧𝐵
(0) {

−𝐴23
𝐴13
0

} (117) 

 

where 𝐴13 and 𝐴23 are the elements of the transformation matrix. 

At different orders we have: 

 

{𝑴ℎ𝑠0(1)}
𝑉
= −𝜚𝑔𝑉𝑧𝐵

(0) {

𝜃𝑥
(1)

𝜃𝑦
(1)

0

}     ,     {𝑴ℎ𝑠0(2)}
𝑉
= −𝜚𝑔𝑉𝑧𝐵

(0)({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) (118) 

 

• Component {𝑴ℎ𝑠0}𝛿𝑆𝐵1  

 

{𝑴ℎ𝑠0}𝛿𝑆𝐵1 = −𝜚𝑔∬ 𝑧[𝒖]{𝒏}𝑑𝑆
𝛿𝑆𝐵1

 (119) 

 

This term is of second order and is given by: 

 

{𝑴ℎ𝑠0}𝛿𝑆𝐵1 =
1

2
𝜚𝑔∫ (z(1))

2

𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (120) 

6.3.3 Total pressure induced moment 

The total pressure induced moment {𝐌} is obtained by summing up the different contributions 

 

{𝑴} = {𝑴ℎ𝑑} + {𝑴ℎ𝑠Ξ} + {𝑴ℎ𝑠0}𝑆𝐹𝑙0 +
{𝑴ℎ𝑠0}𝑉 + {𝑴

ℎ𝑠0}𝛿𝑆𝐵1  (121) 

 

The following expressions are deduced: 

 

{𝑴(1)} =  ∬ 𝑃(1)[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ 𝑧(1)[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔𝑉𝑧𝐵
(0) {

𝜃𝑥
(1)

𝜃𝑦
(1)

0

} (122) 

   

{𝑴(2)} =  ∬ (𝑃(2) + 𝑃(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐹𝑙0

  

   

 −𝜚𝑔𝑉𝑧𝐵
(0) ({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (123) 

 

where we note that, for the formulation of Molin & Marion, we have ℋ23 = −𝜃𝑧
(1)𝜃𝑦

(1)
 and ℋ13 = −𝜃𝑧

(1)𝜃𝑥
(1)

. 

It should also be noted that further transformations were made in Molin & Marion (1985) and the expression (123) is 

rewritten in the different form as shown in Figure 7. We do not do this here. 

6.3.4 Comparisons Molin & Marion vs direct 

First we recall the expressions to be compared: 

 

• Direct formulation 

 

{𝑴(2)} =  ∬ (𝑃(2) + 𝑃(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

− 𝜚𝑔∬ (𝑧(2) + 𝑧(0)[𝑨(2)] + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

 

   

 +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (124) 

 

• Molin & Marion’s formulation 
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{𝑴(2)} =  ∬ (𝑃(2) + 𝑃(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

+ 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐹𝑙0

  

   

 −𝜚𝑔𝑉𝑧𝐵
(0) ({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) +
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

[𝒖0]{𝒏0}

cos 𝛾
𝑑𝐶 (125) 

 

It follows that, in order for the two formulations to be equivalent, the following identity should be verified: 

 

𝐼𝑀0 = −𝜚𝑔∬ (𝑧(2) + 𝑧(0)[𝑨(2)] + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0

  

   

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐹𝑙0

− 𝜚𝑔𝑉𝑧𝐵
(0)({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) (126) 

 

Similar to the forces, this identity follows directly from the divergence theorem but here we demonstrate it again using 

the inverse approach. For that purpose, the integral 𝐼𝑀0  is decomposed in two parts: 

 

𝐼𝑀0 = −𝜚𝑔∬ (𝑧(2) + 𝑧(0)[𝑨(2)] + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0±𝑆𝐹𝑙0

= 𝐼𝑀0
1 + 𝐼𝑀0

2  (127) 

 

where 𝐼𝑀0
1  is the integral over the closed volume and 𝐼𝑀0

2  is the integral over the waterplane area. 

Knowing that: 

 

𝐼𝑀0
2 = 𝜚𝑔∬ (𝑧(2) + 𝑧(0)[𝑨(2)] + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆

𝑆𝐹𝑙0

= 𝜚𝑔∬ (𝑧(2) + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐹𝑙0

 

 (128) 

it follows that, in order for (126) to be satisfied, the following should be true: 

 

𝐼𝑀0
1 = −𝜚𝑔∬ (𝑧(2) + 𝑧(0)[𝑨(2)] + 𝑧(1)[𝜽(1)])[𝒖0]{𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= −𝜚𝑔𝑉𝑧𝐵
(0) ({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) 

 (129) 

Each term in 𝐼𝑀0
1  is developed separately: 

 

∬ 𝑧(2)[𝒖0]{𝒏0}𝑑𝑆
𝑆𝐵0+𝑆𝐹𝑙0

= ∭[∇](𝑧(2){𝒖0})𝑑𝑉
𝑉

= 𝑉𝑧𝐵
(0)
({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

}+
1

2
{
−ℋ32

ℋ31

0
}) 

  
∬ 𝑧(0) [𝑨

(2)
] [𝒖0]{𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= ([𝜽(2)] −
1

2
[𝓗])∭[∇][(𝑧0 + 𝑧𝐺

(0)){𝒖0}]𝑑𝑉
𝑉

= 0 

  

∬ 𝑧(1) [𝑨
(1)
] [𝒖0]{𝒏0}𝑑𝑆

𝑆𝐵0+𝑆𝐹𝑙0

= [𝜽(1)]∭[∇][(𝑧𝐺
(1) + 𝜃𝑥

(1)𝑦0 − 𝜃𝑦
(1)𝑥0){𝒖0}]𝑑𝑉

𝑉

= 𝑉𝑧𝐵
(0) {

−𝜃𝑧
(1)𝜃𝑦

(1)

𝜃𝑧
(1)𝜃𝑥

(1)

0

} 

 

After summing the three terms it follows that: 

 

𝑉𝑧𝐵
(0)({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} +
1

2
{
−ℋ32

ℋ31

0

}) + 𝑉𝑧𝐵
(0) {

−𝜃𝑧
(1)𝜃𝑦

(1)

𝜃𝑧
(1)𝜃𝑥

(1)

0

} = 𝑉𝑧𝐵
(0)({

𝜃𝑥
(2)

𝜃𝑦
(2)

0

} −
1

2
{
−ℋ23

ℋ13

0

}) (130) 

 

Knowing that the elements of the matrix [𝓗] are given by (83) it can be concluded that the identity (130) is satisfied, 

which completes the proof of the equivalence of two formulations.  
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6.4 Ogilvie [4] 

The following expression is given up to second order: 

 

 
 

Figure 8: Moments up to second order, by Ogilvie [4]. 

 

The reference point for the definition of the moments is the origin of the inertial coordinate system which is located at 

the mean position of the free surface with an arbitrary horizontal location. The expressions which are given in [4] are 

incomplete and do not allow for detailed comparisons. 

It is also important to note that, in the Ogilvie’s formulation, the convention “123” is used for the definition of the Euler 

angles (care when interpreting because the transpose of the transformation matrix is first introduced). This means that 

the antisymmetric matrix [𝑯]𝐴𝑆 is: 

 

[𝑯]𝐴𝑆 =

[
 
 
 0 −𝜃𝑦

(1)𝜃𝑥
(1) −𝜃𝑧

(1)𝜃𝑥
(1)

𝜃𝑦
(1)𝜃𝑥

(1) 0 −𝜃𝑧
(1)𝜃𝑦

(1)

𝜃𝑧
(1)𝜃𝑥

(1) 𝜃𝑧
(1)𝜃𝑦

(1) 0 ]
 
 
 

 (131) 

 

This fact does not represent any particular problem, and the motions of the floating body should remain the same as for 

any other convention for defining the transformation matrix. 

 

 

  



21 

 

6.5 Pinkster [5] 

The following expression is given for the second order external moment: 

 

 
 

Figure 9: Second order moment by Pinkster. 

 

It should be noted that the reference point for the definition of the moments is the instantaneous position of the center of 

gravity i.e. the same as in direct formulation and that by Molin & Marion [3]. It follows that the expression for the 

second order moment (Figure 9) is the same as the one given by direct formulation. Once again, the only difference is 

the fact that the quadratic term [𝓗] in the second order transformation matrix is missing. 
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7 Boundary Value Problems 
The critical elements in the definition of the Boundary Value Problems for the velocity potentials at different order are 

the boundary conditions at the free surface and on the body. 

7.1 Free surface boundary condition 

The free surface boundary conditions are the same in all formulations. They are given by: 

 

𝜕2Φ(1)

𝜕𝑡2
+ 𝑔

𝜕Φ(1)

𝜕𝑍
= 0 (132) 

   
𝜕2Φ(2)

𝜕𝑡2
+ 𝑔

𝜕Φ(2)

𝜕𝑍
= −2∇Φ(1)∇

𝜕Φ(1)

𝜕𝑡
+
1

𝑔

𝜕Φ(1)

𝜕𝑡
[
𝜕3Φ(1)

𝜕𝑡2𝜕𝑍
+ 𝑔

𝜕2Φ(1)

𝜕𝑍2
] (133) 

 

The corresponding wave elevations are also the same and given by: 

 

Ξ(1) = −
1

𝑔

𝜕Φ(1)

𝜕𝑡
 (134) 

   

Ξ(2) = −
1

𝑔
[
𝜕Φ(2)

𝜕𝑡
+
1

2
(∇Φ(1))

2
−
1

𝑔

𝜕Φ(1)

𝜕𝑡

𝜕2Φ(1)

𝜕𝑡𝜕𝑍
] (135) 

7.2 Body boundary condition 

7.2.1 Direct formulation 

The fluid velocity at the instantaneous position on the body is written as a function of its value at rest using the Taylor 

series expansion: 

 

∇Φ(𝒓) =  ∇Φ(𝒓𝟎) + ({𝒓 − 𝒓𝟎}
𝑇{∇})∇Φ(𝒓𝟎) (136) 

 

The displacement of the point attached to the body being given by (23), we can write: 

 

{∇Φ} = 𝜀{∇Φ(1)} + 𝜀2 [{∇Φ(2)} + ({𝒓(1)}
𝑇
{∇}) {∇Φ(1)}] (137) 

 

so that the body boundary conditions at first two orders become: 

 

{∇Φ(1)}
𝑇
{𝒏0} = {𝒗(1)}

𝑇
{𝒏0} (138) 

    
{∇Φ(2)}

𝑇
{𝒏0} = [{𝒗(2)} − ({𝒓(1)}

𝑇
{∇}) {∇Φ(1)}]

𝑇
{𝒏0} + ({𝒗

(1)} − {∇Φ(1)})
𝑇
{𝒏(1)} (139) 

 

where the relations (24) to (29) should be used for the different first and second order quantities. 

7.2.2 Molin & Marion [3] 

The following expressions are given: 

 
 

Figure 10: Body boundary conditions at different orders, by Molin & Marion. 

 

Within the present notations we have: 

�⃗⃗� 0 = {𝒏0}     ,     𝑃0𝑃
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝒓(1)}     ,     �⃗⃗� (1) = {𝒏(1)}     ,     �⃗⃗� (1) = {𝒗(1)}     ,     �⃗⃗� (2) = {𝒗(2)} (140) 
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In Molin & Marion (1985), the velocity components �⃗⃗� (1) and �⃗⃗� (2) seem to not be given explicitly in time domain, but in 

frequency domain only. However they can be deduced by adding to the translational velocity of the center of gravity, 

the relative velocity of the point around the center of gravity which are given by: 

 

  
 

Figure 11: Velocity of the point attached to the body in Molin & Marion. 

 

Using the notations from Molin & Marion, it follows that: 

 

�⃗⃗� (1) = [

�̇�𝐺
(1)

�̇�𝐺
(1)

�̇�𝐺
(1)

] + [

0 −�̇�(1) �̇�(1)

�̇�(1) 0 −�̇�(1)

−�̇�(1) �̇�(1) 0

] [
𝑋
𝑌
𝑍
] (141) 

   

�⃗⃗� (2) = [

�̇�𝐺
(2)

�̇�𝐺
(2)

�̇�𝐺
(2)

] + [

0 −�̇�(2) �̇�(2)

�̇�(2) 0 −�̇�(2)

−�̇�(2) �̇�(2) 0

] [
𝑋
𝑌
𝑍
]  

   

+ [

−𝛽(1)�̇�(1) − 𝛾(1)�̇�(1) 𝛼(1)�̇�(1) 𝛼(1)�̇�(1)

�̇�(1)𝛽(1) −𝛼(1)�̇�(1) − 𝛾(1)�̇�(1) 𝛽(1)�̇�(1)

�̇�(1)𝛾(1) �̇�(1)𝛾(1) −𝛼(1)�̇�(1) − 𝛽(1)�̇�(1)
] [
𝑋
𝑌
𝑍
] (142) 

 

Within the present notations �⃗⃗� (1) and �⃗⃗� (2) correspond to {𝒗(1)} and {𝒗(2)} which are recalled here in the form: 

 

{𝒗(1)} = {�̇�𝐺
(1)} + [�̇�(1)]{𝒖0}     ,     {𝒗

(2)} = {�̇�𝐺
(2)} + ([�̇�(2)] −

1

2
[�̇�]) {𝒖0} (143) 

 

Within the formulation of Molin & Marion, the quadratic part [𝓗] , of the second order transformation matrix is given 

by [𝓗] = [𝑯]𝑆 so that we have: 

 

[�̇�] = [�̇�]
𝑆
=

[
 
 
 
 2 (𝜃𝑧

(1)�̇�𝑧
(1)
+ 𝜃𝑦

(1)�̇�𝑦
(1)
) −�̇�𝑦

(1)
𝜃𝑥
(1) − 𝜃𝑦

(1)�̇�𝑥
(1)

−�̇�𝑧
(1)
𝜃𝑥
(1) − 𝜃𝑧

(1)�̇�𝑥
(1)

−�̇�𝑦
(1)
𝜃𝑥
(1) − 𝜃𝑦

(1)�̇�𝑥
(1)

2 (𝜃𝑧
(1)�̇�𝑧

(1)
+ 𝜃𝑥

(1)�̇�𝑥
(1)
) −�̇�𝑧

(1)
𝜃𝑦
(1) − 𝜃𝑧

(1)�̇�𝑦
(1)

−�̇�𝑧
(1)
𝜃𝑥
(1) − 𝜃𝑧

(1)�̇�𝑥
(1)

−�̇�𝑧
(1)
𝜃𝑦
(1) − 𝜃𝑧

(1)�̇�𝑦
(1)

2 (𝜃𝑦
(1)�̇�𝑦

(1)
+ 𝜃𝑥

(1)�̇�𝑥
(1)
)]
 
 
 
 

 (144) 

 

In Molin & Marion, the matrix [�̇�] is further simplified by assuming the periodic motion, which apparently requires 

that: 

 

[�̇�(1)][𝜽(1)] = [𝜽(1)][�̇�(1)] (145) 

 

so that finally we have: 

 

−
1

2
[�̇�] = −

1

2
[�̇�]

𝑆
=

[
 
 
 
 −𝜃𝑧

(1)�̇�𝑧
(1)
− 𝜃𝑦

(1)�̇�𝑦
(1)

�̇�𝑦
(1)
𝜃𝑥
(1) �̇�𝑧

(1)
𝜃𝑥
(1)

𝜃𝑦
(1)�̇�𝑥

(1)
−𝜃𝑧

(1)�̇�𝑧
(1)
− 𝜃𝑥

(1)�̇�𝑥
(1)

�̇�𝑧
(1)
𝜃𝑦
(1)

𝜃𝑧
(1)�̇�𝑥

(1)
𝜃𝑧
(1)�̇�𝑦

(1)
−𝜃𝑦

(1)�̇�𝑦
(1)
− 𝜃𝑥

(1)�̇�𝑥
(1)
]
 
 
 
 

 (146) 

 

This is the last term in (142) so that the equivalence of the expressions (143) and (142) is demonstrated. 

It is important to note that the quadratic term [𝓗] being different in the direct approach, within the “321” convention 

for Euler angles, the following expression is obtained for its time derivative: 

 

−
1

2
[�̇�] =

[
 
 
 −𝜃𝑧

(1)
�̇�𝑧
(1)
− 𝜃𝑦

(1)
�̇�𝑦
(1)

�̇�𝑦
(1)
𝜃𝑥
(1)
+ 𝜃𝑦

(1)
�̇�𝑥
(1)

�̇�𝑧
(1)
𝜃𝑥
(1)
+ 𝜃𝑧

(1)
�̇�𝑥
(1)

0 −𝜃𝑧
(1)
�̇�𝑧
(1)
− 𝜃𝑥

(1)
�̇�𝑥
(1)

�̇�𝑧
(1)
𝜃𝑦
(1)
+ 𝜃𝑧

(1)
�̇�𝑦
(1)

0 0 −𝜃𝑦
(1)
�̇�𝑦
(1)
− 𝜃𝑥

(1)
�̇�𝑥
(1)
]
 
 
 

 (147) 
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7.2.3 Ogilvie [4] 

The expressions given by Ogilvie are: 

 

 
 

Figure 12: Body boundary conditions at different orders, by Ogilvie 

 

It can be seen that the formulation is the same as in the direct approach provided that the quadratic term [𝓗] , in the 

second order transformation matrix, corresponds to the “123” convention for Euler angles. 

7.2.4 Pinkster [5] 

The expressions given by Pinkster are: 

 

 
 

Figure 13: Body boundary conditions at different orders, by Pinkster. 

 

It can be seen that the expression takes the same form as in the direct approach. However, as already mentioned 

Pinkster formulation contains an error because the quadratic term [𝓗] , in the second order transformation matrix, is 

missing, which is not correct. 

7.2.5 Chen [1] 

The expressions given by Chen are: 

 

 
 

Figure 14: Body boundary conditions at different orders, by Chen. 

 

where, using the present notations, the velocities �⃗⃗� 𝐸
(1)

 and �⃗⃗� 𝐸
(2)

 are defined by: 

 

�⃗⃗� 𝐸
(1) = {�̇�𝐺

(1)} + [�̇�(1)]{𝒖0}     ,     �⃗⃗� 𝐸
(2) = {�̇�𝐺

(2)} + [�̇�(2)]{𝒖0} (148) 

 

This means that the quadratic term [�̇�] is missing which is not correct.  
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8 Inertial loading & motion equations 

8.1 General 

The inertial loading follows from the conservation laws for the linear {𝐏} and the angular momentum {𝐋} which are 

defined as follows: 
{𝐏} = [𝒎]{�̇�𝐺}     ,     {𝐋} = [𝑰𝜃𝜃]{𝛀} (149) 

 

where [𝑰𝜃𝜃] denotes the rotational inertia matrix which is defined by: 

 

[𝑰𝜃𝜃] = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] =∭ [𝒖]𝑇[𝒖]
∀𝐵

𝜌𝑑𝑉 =∭ [

𝑢𝑧
2 + 𝑢𝑦

2 −𝑢𝑦𝑢𝑥 −𝑢𝑧𝑢𝑥

−𝑢𝑥𝑢𝑦 𝑢𝑧
2 + 𝑢𝑥

2 −𝑢𝑧𝑢𝑦

−𝑢𝑥𝑢𝑧 −𝑢𝑦𝑢𝑧 𝑢𝑦
2 + 𝑢𝑥

2

]
∀𝐵

𝜌𝑑𝑉 (150) 

 

The corresponding time derivatives of the linear and the angular momentums (149) are given by: 

 

{�̇�} = [𝒎]{�̈�𝐺}     ,     {�̇�} = [𝑰𝜃𝜃]{�̇�} + [𝛀][𝑰𝜃𝜃]{𝛀} (151) 

 

Due to the body motions the rotational inertia matrix [𝑰𝜃𝜃] depends on time through the following relation: 

 

[𝑰𝜃𝜃] = [𝑨][𝑰𝜃𝜃
′ ][𝑨]𝑇 (152) 

 

where [𝑰𝜃𝜃
′ ] denotes the rotational inertia matrix expressed in the body fixed coordinate system: 

 

[𝑰𝜃𝜃
′ ] =∭ [𝒖0]

𝑇[𝒖0]
∀𝐵

𝜌𝑑𝑉 =∭ [

𝑢0𝑧
2 + 𝑢0𝑦

2 −𝑢0𝑦𝑢0𝑥 −𝑢0𝑧𝑢0𝑥

−𝑢0𝑥𝑢0𝑦 𝑢0𝑧
2 + 𝑢0𝑥

2 −𝑢0𝑧𝑢0𝑦

−𝑢0𝑥𝑢0𝑧 −𝑢0𝑦𝑢0𝑧 𝑢0𝑦
2 + 𝑢0𝑥

2

]
∀𝐵

𝜌𝑑𝑉 (153) 

 

The second order rotational motion is considered in details only. 

8.2 Direct approach 

The relation (152) is first developed up to second order: 

 

[𝑰𝜃𝜃] = [𝑰𝜃𝜃
′ ] + 𝜀([𝑨(1)][𝑰𝜃𝜃

′ ] − [𝑰𝜃𝜃
′ ][𝑨(1)]) (154) 

 

It follows that the time derivative of the angular momentum at second order becomes: 

 

{�̇�(2)} = [𝑰𝜃𝜃
′ ]{�̇�(2)} + ([𝑨(1)][𝑰𝜃𝜃

′ ] − [𝑰𝜃𝜃
′ ][𝑨(1)]){�̇�(1)} + [𝛀(1)][𝑰𝜃𝜃

′ ]{𝛀(1)} (155) 

 

This can be rewritten in terms of the rotational angles as follows: 

 

{�̇�(2)} = [𝑰𝜃𝜃
′ ]({�̈�(2)} + [�̇�(1)]{�̇�(1)} + [𝐆(1)]{�̈�(1)}) + ([𝜽(1)][𝑰𝜃𝜃

′ ] − [𝑰𝜃𝜃
′ ][𝜽(1)]){�̈�(1)} + [�̇�(1)][𝑰𝜃𝜃

′ ]{�̇�(1)} 

 (156) 

 

In frequency domain this becomes: 

 

{�̇�(2)} = −4𝜔2[𝑰𝜃𝜃
′ ]{𝜽(2)} − 𝜔2([𝑰𝜃𝜃

′ ][𝐆(1)]{𝜽(1)} + [𝜽(1)][𝑰𝜃𝜃
′ ]{𝜽(1)}) (157) 

8.3 Molin & Marion [3] 

It can be shown that, in this case we have: 

 

[𝐆(1)] =
1

2
[𝜽(1)] (158) 

so that we can write: 

 

{�̇�(2)} = [𝑰𝜃𝜃
′ ]{�̈�(2)} + ([𝜽(1)][𝑰𝜃𝜃

′ ] −
1

2
[𝑰𝜃𝜃
′ ][𝜽(1)]) {�̈�(1)} + [�̇�(1)][𝑰𝜃𝜃

′ ]{�̇�(1)} (159) 

In frequency domain this becomes: 
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{�̇�(2)} = −4𝜔2[𝑰𝜃𝜃
′ ]{𝜽(2)} − 𝜔2[𝜽(1)][𝑰𝜃𝜃

′ ]{𝜽(1)} (160) 

 

In [3], the final equilibrium equation for the rotational motion is given in frequency domain as: 

 

 

(161) 

 

where the body was assumed to be symmetric i.e. 𝐼𝑋𝑌 = 𝐼𝑌𝑍 = 0. 

In order for (160) and (161) to be equivalent, the following identity should be verified: 

 

[𝜽(1)][𝑰𝜃𝜃
′ ]{𝜽(1)} =

{
 
 

 
 𝜃𝑦

(1)𝜃𝑧
(1)(𝐼𝑧𝑧

′ − 𝐼𝑦𝑦
′ ) + 𝜃𝑥

(1)𝜃𝑦
(1)𝐼𝑥𝑧

′

𝜃𝑥
(1)𝜃𝑧

(1)(𝐼𝑥𝑥
′ − 𝐼𝑧𝑧

′ ) + (𝜃𝑧
(1)2 − 𝜃𝑥

(1)2) 𝐼𝑥𝑧
′

𝜃𝑥
(1)𝜃𝑦

(1)(𝐼𝑦𝑦
′ − 𝐼𝑥𝑥

′ ) − 𝜃𝑦
(1)𝜃𝑧

(1)𝐼𝑥𝑧
′

}
 
 

 
 

 (162) 

 

This can be easily demonstrated by developing [𝜽(1)][𝑰𝜃𝜃
′ ]{𝜽(1)}. When doing that a typo error was found in the 

expression (161). The sign of last term in the quadratic inertia vector should change 𝛽(1)𝛾(1)I𝑋𝑍 ⟹ −𝛽(1)𝛾(1)I𝑋𝑍. 

8.4 Ogilvie [4] 

In [4] the description of the body motion is very particular and quite different from others. 

8.4.1 Translation 

The reference translation vector, for the definition of the body motion, is the translation of the origin of the body 

coordinate system and not the translation of the center of gravity, like in other formulations. The origin of the mean 

body fixed coordinate system (equal to the earth fixed coordinate system at initial instant) is placed at an arbitrary point 

in the plane of the free surface. This means that the unknowns of the translational (force) component of the body motion 

equation are the components of this reference translation and the translation of the body center of gravity is deduced in 

the second step, after solving the complete motion equation. The reference translation vector (motion of the origin of 

the coordinate system) is denoted by: 

 

 (163) 

 

The body motion equation is deduced from the conservation of the linear and angular momentum (Euler Newton law) 

where the reference translational motion is the translation of the center of gravity: 

 

 
(164) 

 

This particular description of the body dynamics leads to quite unusual expressions for the translational component of 

the body motion equation, in terms of the unknown translational vector  :  

 

 

(165) 

8.4.2 Rotation 

The rotational component of the body motion equation is written as: 

 

  
(166) 

 

where, within the present notations, 𝐆G corresponds to {𝑴} and 𝐊 corresponds to {𝐋}. 
The instantaneous orientation of the body (rotation) is described using the concept of the Euler angles with the “123” 

convention. The final rotational part of the body motion equation is given in the following form: 
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(167) 

 

The different terms on the right hand side of (167) occur because of the particular choice of the description of the body 

motion which requires the transfer of the moments from the origin of the inertial coordinate system to the instantaneous 

center of gravity and, in addition, the transfer of the different quantities from the inertial to the body fixed coordinate 

system. 

As it can be seen the motion equation (167) is written in terms of the rotational velocity vector 𝜔′ which, in addition, is 

expressed relative to the body fixed coordinate system. Within the present notations, this vector corresponds to: 

𝜔′ = [𝑨]𝑇{𝛀} = [𝑨]𝑇[𝐆]{�̇�} (168) 

 

which gives at different orders: 

 

𝜔1
′ = {𝛀′(1)} = {�̇�(1)} , 𝜔2

′ = {𝛀′(2)} = {�̇�(2)} + [𝐆′(1)]{�̇�(1)} (169) 

    
�̇�1
′ = {�̇�′(1)} = {�̈�(1)} , �̇�2

′ = {�̇�′(2)} = {�̈�(2)} + [�̇�′(1)]{�̇�(1)} + [𝐆′(1)]{�̈�(1)} (170) 

 

In principle, there is nothing wrong with the motion equation (167) but it looks unnecessary complicated compared to 

the equivalent expression which could be obtained from the direct approach in the following form: 

 

[𝑰𝜃𝜃
′ ]{�̇�′(2)} = {𝑴′(2)} − [𝛀′(1)][𝑰𝜃𝜃

′ ]{𝛀′(1)} (171) 

 

In addition, the fact that the motion equation is written with respect to the rotational velocity vector requires the 

additional step when evaluating the instantaneous orientation of the body (rotation angles {𝜽}), at each time step. 

8.5 Pinkster [5] 

The second order motion equation is not discussed, at least not in [5]. 

8.6 Chen [1] 

In Chen [1] the moment of inertia is defined as: 

 

 

(172) 

It looks like the expression is not correct because the acceleration is defined in the earth fixed (inertial) coordinate 

system while the position vector is defined in the body fixed coordinate system. The correct expression is: 

 

�⃗⃗� =∭ 𝑟 ∧ 𝑎 𝜌𝑑𝑉

∀

 (173) 

 

where 𝑟  is the position vector relative to the instantaneous position of the center of gravity, expressed in the earth fixed 

coordinate system. 

Using the notations from [1], the vectors 𝑟  and 𝑟 0 are related through the transformation matrix 𝑅(⬚) as follows: 

 
𝑟 = 𝑅(�⃗� 0) (174) 

 

We can now rewrite the expression (173) as: 

 

�⃗⃗� =∭𝑟 0 ∧ 𝑎 𝜌𝑑𝑉

∀

+∭𝑅(𝑟 0) ∧ 𝑎 𝜌𝑑𝑉

∀

 (175) 

 

which means that the second term is missing in the expression (172). 

The expression (173) can also be rewritten as: 

 

�⃗⃗� =
𝑑

𝑑𝑡
∭ 𝑟 ∧ 𝑣 𝜌𝑑𝑉

∀

 (176) 

 

In order to demonstrate that this expression is valid, we recall the following definitions: 
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𝑑

𝑑𝑡
𝑟 

= 
Ω⃗⃗ ∧ 𝑟   

   
𝑣 = 𝑣 𝐺 + Ω⃗⃗ ∧ 𝑟   

   
𝑎 = 

𝑑

𝑑𝑡
𝑣 = �⃗⃗� 𝐺 + Ω⃗⃗ ̇ ∧ �⃗� + Ω⃗⃗ ∧ (Ω⃗⃗ ∧ �⃗� ) (177) 

 

Now we develop the expression (176) as follows: 

 

�⃗⃗� =∭(
𝑑

𝑑𝑡
𝑟 ∧ 𝑣 + 𝑟 ∧

𝑑

𝑑𝑡
𝑣 ) 𝜌𝑑𝑉

∀

 (178) 

 

It follows that in order for (176) to be valid, the following should be true: 

 

�⃗⃗� =∭
𝑑

𝑑𝑡
𝑟 ∧ 𝑣 𝜌𝑑𝑉

∀

= 0 (179) 

 

This can be easily demonstrated by using the following identities: 

 

∭ 𝑟 𝜌𝑑𝑉

∀

= 0     ,     ∭(Ω⃗⃗ ∧ 𝑟 ) ∧ 𝑣 𝜌𝑑𝑉

∀

= 0 (180) 

 

Finally, within the present notations we can write: 

 

�⃗⃗� = {�̇�} = [𝑰𝜃𝜃]{�̇�} + [𝛀][𝑰𝜃𝜃]{𝛀} (181) 

 

This proves that the expression (173) is fully equivalent to the expression (151), which was obtained by considering the 

conservation of the angular momentum. 
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9 Discussions 
Here we summarize the main characteristics of the different formulations and we compare them to the direct approach 

which was proposed here. 

9.1 Molin & Marion [3] 

 

• The description of the body motion is bit particular when compared to other formulations. This means that the 

transformation matrix is not explicitly defined for the fully nonlinear body motions. However, up to second 

order the same expressions as those given by Chen [1] are obtained. The particularity of this description of the 

body motion is that the antisymmetric part of the quadratic term, in the definition of the second order 

transformation matrix [𝑨(2)], is zero: 

 
[𝑯]𝐴𝑆 = [0] (182) 

 

• The symmetric part of the second order transformation matrix is the same as in other formulations, and is given 

by: 

 

[𝑯]𝑆 = −[𝜽(1)][𝜽(1)] (183) 

 

• The body motion equation in the time domain is not explicitly given (at different orders) but in the frequency 

domain only. 

• In this formulation everything agrees with the direct formulation except the sign of the last term in the 

rotational inertia moment (161) which should be negative. This means that the following change should be 

made: 

 

𝛽(1)𝛾(1)I𝑋𝑍 ⟹−𝛽(1)𝛾(1)I𝑋𝑍 (184) 

9.2 Ogilvie [4] 

 

• The description of the body dynamics is different from other formulations in the sense that the reference 

translation is defined as the translation of the origin of the coordinate system fixed to the body, which is not 

necessarily the body center of gravity. This fact give rise to some additional components in the excitation 

loading which occur when formulating the body motion equation. 

• The concept of Euler angles is used to describe the nonlinear orientation of the body, within the so called 

“123” convention. Care should be taken when interpreting the transformation matrix because its transpose is 

first introduced.  

• The external pressure forces agree with the direct formulation for the wall-sided bodies. The case of non wall-

sided bodies was not considered. 

• The external pressure moments are defined with respect to the origin of the inertial coordinate system, which 

was chosen to be located at the free surface with an arbitrary horizontal position. The expressions given for the 

moments appears to be incomplete and it was not possible to make the direct comparisons. Having said that, if 

the developments of the external moments have been performed till the end, most probably the same results 

would be obtained, because the same basic principles for their derivation are used. 

• The Boundary Value Problems for the velocity potentials agree with the direct approach. 

9.3 Pinkster [5] 

 

• The body motion equation is not considered but only the external loads and the BVP’s for the velocity 

potentials. 

• The fully nonlinear description of the body motion was not considered and the development at different orders 

is given directly, which led to the fact that the quadratic term in the second order transformation matrix [𝓗] 
has been forgotten. This represents the main drawback of the Pinksters formulation and it has the consequences 

on several issues (external forces, body boundary condition, motion equations …) 

• When considering the external pressure loading, the wall-sided bodies are considered only. 

• Apart from the missing term [𝓗], the expressions for the external pressure loading and the formulations of the 

BVP’s agree with the direct approach. 
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9.4 Chen [1] 

 

• The body motion is described using the Rodriguez formula (e.g. see Shabana [6]). Up to second order, this 

description leads to the same expressions as those given by Molin & Marion [3]. 

• The pressure loading is first evaluated with respect to the initial position of the origin of the inertial (earth 

fixed) coordinate system, and is transferred to the instantaneous position of the center of gravity before solving 

the motion equation. 

• The body motion equation is given both in the frequency and in the time domain. 

• All the relevant aspects of the second order formulation agree with the direct approach except: 

− The term [�̇�] is missing in the definition of the body boundary condition for the second order 

velocity potential. 

− In the definition of the rotational component of the body inertia loading, the following term is 

missing: 

 

∭𝑅(𝑟 0) ∧ 𝑎 𝜌𝑑𝑉

∀

 (185) 

10 Conclusions 
A comprehensive review of the most common formulations for the interactions of water waves and the floating rigid 

body is presented. The different notations, coordinate systems, description of nonlinear body motion …, made the 

exercise quite complex. It has been shown that the different formulations are fully equivalent in principle, except that 

some small errors are present in some of the formulations. 

Traditionally the second order problem is usually formulated with respect to the earth fixed coordinate system and that 

is why the direct formulation which has been proposed here is also formulated in the earth fixed coordinate system. The 

formulation in the body fixed coordinate system was not discussed. Formulating the problem in the body fixed 

coordinate system leads, of course, to exactly the same results, however the components of the different vector 

quantities change. The interest for the formulation in the body fixed coordinate system is driven by the possibility to 

easily extend the theory to flexible bodies where the additional flexible modes are naturally defined with respect to the 

body fixed coordinate system. This work will be presented separately. 
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