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Résumé 

 

Dans la modélisation hydrodynamique des navires, des simulations en hypothèse d’écoulement 

potentiel sont utilisées pour fournir les efforts de houle de premier ordre, de masse ajoutée et 

d'amortissement de radiation. Ces deux derniers termes sont définis comme des coefficients 

dépendant de la fréquence. Afin d'effectuer des simulations dans le domaine temporel, la formulation 

de Cummins introduit une fonction de retard qui par convolution avec la vitesse du flotteur permet 

d’évaluer l'amortissement requis et la masse ajoutée. Pour les simulations d’éoliennes, les fabricants 

de turbines fournissent des informations sur l'amortissement pour différents modes propres du 

système. Lorsque l'on utilise la formulation classique de Rayleigh dans l'analyse dynamique 

structurelle, l'amortissement peut être considéré comme proportionnel à la matrice de masse et de 

rigidité du système et donc deux multiplicateurs proportionnels sont disponibles pour reproduire dans 

le domaine temporel l'amortissement modal. L'un des inconvénients de cette approche est qu’au 

maximum deux modes peuvent être sélectionnés pour s'adapter au niveau d'amortissement requis, 

mais pour les autres modes, l'amortissement ne peut pas être choisi et est imposé par la sélection des 

multiplicateurs. 

L'utilisation d'un amortissement dépendant de la fréquence pour l'analyse structurelle dans le 

domaine temporel est proposée. Pour les fréquences modales sélectionnées, un niveau 

d'amortissement est défini et appliqué sous la forme d'une fonction triangle ou échelon autour des 

fréquences cibles.  Le terme de convolution de la formulation de Cummins est ensuite utilisé pour 

appliquer l'amortissement dans le domaine temporel. Les tests numériques sont basés sur la turbine 

de 15 MW définie par l'IEA. La formulation de l'amortissement est d'abord vérifiée sur une seule 

pale, puis sur l'ensemble de l'éolienne. Il est constaté qu'il est possible d'amortir des fréquences 

spécifiques avec différents niveaux d'amortissement avec très peu d'influence sur les fréquences qui 

ne sont pas ciblées. Cette approche peut ensuite être utilisée pour un modèle d'éolienne flottante avec 

un amortissement spécifique sur l'éolienne qui ne ciblerait que la réponse de l'éolienne. Il est enfin 
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vérifié que cette formulation apporte une contribution négligeable aux charges en phase avec 

l'accélération (« masse ajoutée ») et que pour un essai de décroissance avec réponse monomode, le 

décrément logarithmique calculé converge avec le temps vers le décrément introduit par un 

coefficient d'amortissement direct sur la vitesse. 

  

 

Summary 

 

In hydrodynamic modelling of vessels, potential flow simulations are used to provide frequency 

domain loadings in terms of first-order wave forces, added mass and radiation damping. Those last 

two terms are defined as frequency-dependant coefficients. In order to perform time domain 

simulations, the Cummins formulation introduces a retardation function that is convoluted in time 

with the floater’s velocity to produce the required damping and added mass. In simulation of wind 

turbine response, turbine manufacturers provide information on the damping for different eigenmodes 

of the system. When using classical Rayleigh formulation in structural analysis, the damping can be 

considered proportional to the mass and stiffness matrix of the system and therefore two proportional 

multipliers at most can be used to reproduce in time domain the modal damping. One of the drawbacks 

of this approach is that one or two modes can be selected to fit the required level of damping but for 

other modes or frequencies, the damping cannot be chosen and is imposed by the selection of the 

multipliers. 

The use of a frequency dependant damping for structural analysis in time domain is tested. For 

selected modal frequencies of the system a level of damping is defined and applied as a triangle or 

step function around target frequencies.  The convolution term of the Cummins formulation is then 

used to apply the damping in time domain. The numerical tests are based on the 15MW turbine 

defined by the IEA. The damping formulation is first checked on a single blade and then on the whole 

wind turbine. It is found that it is possible to damp specific frequencies with different level of damping 

with very little influence on the frequencies that are not targeted. This approach can then be used for 

floating wind turbine model with specific damping on the turbine that would only target the turbine 

response. It is finally verified that this formulation brings negligible contribution to the loads in phase 

with the acceleration (“added mass”) and that for decay test with single mode response the logarithmic 

decrement converges with time towards the decrement introduced by a direct damping coefficient on 

the velocity.  
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I – Introduction 

 
Floating wind turbines are made of a turbine, a tower, a floater and mooring lines (Figure 1). 

They respond to environmental loadings (wind, wave, current) as well as turbine rotation and 

controller in production mode. The system has rigid modes based on the floaters characteristics 

response in surge, sway, have roll, pitch and yaw. It has also higher frequency modes due to structural 

deformation of the blade, tower and floater structure. 

 

 

Figure 1. Floating Wind Turbine 

Focusing on the modeling of the turbine, suppliers provide damping information either for the 

blades or for the tower and RNA system. The damping data are provided as damping ratio or 

logarithmic decrement per modes. The question is then how to use these ratios in a time domain 

approach when the system is not solved based on a projection on its eigenmodes. In the present paper, 

such damping is implemented in the form of an impulse response function, constructed from the 

frequency-dependent damping similarly to the so-called ‘retardation function’ used in the Cummins 

equation to simulate the motion of floaters in time-domain. Therefore, the classical Rayleigh approach 

is first presented as well as the ‘retardation function’ approach as defined by Cummins. The updated 

damping formulation is then introduced together with some numerical comparisons between Rayleigh 

damping and updated method applied on a single blade or on the whole turbine. Finally, it is shown 

how the retardation function formulation can be linked to damping ratio per modes. 
 

II – Rayleigh damping and retardation function 

 
II – 1  Damping in structural analysis 

 

The floating wind turbine is modeled by beam elements with a Timoshenko formulation [1]. The 

system is discretized at N nodes with six degrees of freedom for the position (three translations, three 

pseudo rotation vectors [2]) and the equation to solve is: 

 

𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 = 𝑓        ( 1 ) 
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With x and f the position and external loading vectors for the 6xN degrees of freedom and M, C, 

K respectively the mass, damping, and stiffness matrix. Focusing on structural Rayleigh damping [3], 

the matrix C is defined as: 

 

𝐶 = 𝛼𝑀 + 𝛽𝐾         ( 2 ) 

Which provides two parameters  and  to tune the damping. 

 

It is also possible to solve the system by projection on its modal basis. For the ith mode the 

equation is defined as: 

𝑥̈𝑖 + 2𝜉𝑖𝜔𝑖𝑥̇𝑖 + 𝜔𝑖
2𝑥𝑖 =

𝑓𝑖

𝑚𝑖
       ( 3 ) 

With 𝜔𝑖, 𝜉𝑖, 𝑓𝑖, 𝑚𝑖, respectively the eigenvalue, damping ratio, modal mass and modal force on 

mode i. The damping ratio is related to the coefficients in Rayleigh’s formulation by: 

 

𝜉𝑖 = 
1

2
(
𝛼

𝜔𝑖
+ 𝛽𝜔𝑖)        ( 4 ) 

Therefore, it is possible to match the damping on only two of the modes. An extension of the 

Rayleigh damping based on Caughey series [4] is proposed by Adhikari and Phani [5] where the 

damping matrix is expressed as: 

 

𝐶 = 𝑀∑ 𝛼𝑗(𝑀
−1𝐾)𝑗𝑁

𝑗=0        ( 5 ) 

And the modal damping ratios as: 

 

𝜉𝑖 =
1

2
(
𝛼1

𝜔𝑖
+ 𝛼2𝜔𝑖 + 𝛼3𝜔𝑖

3 +⋯)       ( 6 ) 

The Rayleigh formulation corresponding to the first two terms with 𝛼1 = 𝛼 and 𝛼2 = 𝛽.In the 

present paper, a different approach is used by introducing the damping through a retardation function. 

 

 

II – 2  Retardation function in hydrodynamic 

 

Memory effect is a technique used to correctly account for the frequency-dependence of added 

mass and radiation damping in a time-domain simulation. It is accounted through the resolution of 

the so-called Cummin’s equation of motion [6] for each of the six degrees of freedom (DOF) of a 

floater: 

(Mk +Mak(∞))Ẍk(t) + ∫ Rk(τ)Ẋk(t − τ)dτ
∞

0
= F𝑘

ext(t)  ( 7 ) 

With 𝑀𝑘, the mass/inertia matrix, 𝑀𝑎𝑘(∞), the impulse added mass matrix, 𝑅𝑘(𝑡), the matrix of 

retardation functions, 𝑋𝑘(𝑡), the k-DOF motion, 𝐹𝑘
𝑒𝑥𝑡(𝑡), the external k-DOF force including viscous 

damping forces, mooring forces and hydrostatic restoring loads. The technique is based on the 

impulse response function (IRF) of a variable representative of the radiation loads. Since the non-

impulsive part of the radiation transfer function verifies the Kramers-Kronig relations, the retardation 

function can be calculated from the radiation damping terms only. It is expressed as: 

 

Rk(t) =
2

π
∫ Bk(ω) cosωt dω 
∞

0
        ( 8 ) 
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For a regular motion pulsating at a frequency ω, the convolution term associated with the impulse 

inertia term restitutes the exact inertial and damping forces corresponding to Mak(ω) and Bk(ω), 
following Ogilvie’s relations [7]. 

 

II – 3  Application of the retardation function to structural damping 

 

In order to apply structural damping at specific frequencies, a retardation function is introduced 

based on the sum of elementary triangle (Figure 2) or step functions. The unitary triangle function is 

defined by: 

 
𝐵(𝜔) = 0 if 𝜔 < 𝜔𝑖 − Δ𝜔𝑖

−

𝐵(𝜔) =  
𝜔−(𝜔𝑖−Δ𝜔𝑖

−)

𝜔𝑖
− if 𝜔𝑖 − Δ𝜔𝑖

− < 𝜔 < 𝜔𝑖

𝐵(𝜔) =
(𝜔𝑖+Δ𝜔𝑖

+)−𝜔

𝜔𝑖
+ if 𝜔𝑖 < 𝜔 < 𝜔𝑖 + Δ𝜔𝑖

+

𝐵(𝜔) = 0 if 𝜔𝑖 + Δ𝜔𝑖
+ <  𝜔

    ( 9 ) 

 

The associated retardation function is then:  

 

 𝑅(𝑡) =
2

𝜋𝑡2
[
cos(𝜔𝑖𝑡)−cos((𝜔𝑖−Δ𝜔𝑖

−)𝑡)

Δ𝜔𝑖
− −

cos(𝜔𝑖𝑡)+cos((𝜔𝑖+Δ𝜔𝑖
+)𝑡)

Δ𝜔𝑖
+ ] ( 10 ) 

 

 

The unitary step function is defined as: 

 
𝐵(𝜔) = 0 if 𝜔 < 𝜔𝑖 − Δ𝜔𝑖

−

𝐵(𝜔) =  1 if 𝜔𝑖 − Δ𝜔𝑖
− < 𝜔 < 𝜔𝑖

𝐵(𝜔) = 0 if 𝜔𝑖 < 𝜔 < 𝜔𝑖 + Δ𝜔𝑖
+

      ( 11 ) 

 

With retardation function: 

  

𝑅(𝑡) =
2

𝜋

sin((𝜔𝑖+Δ𝜔𝑖
+)𝑡)−sin((𝜔𝑖−Δ𝜔𝑖

−)𝑡)

t
     ( 12 ) 

In both cases, the function is defined for 𝑡 > 0 and 𝑅(0) is to be taken as the limit value. 

 

Figure 2. Example of triangle retardation function for two frequencies 
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As previously stated, the convolution also introduces a frequency-dependent inertial component 

𝐴(𝜔). Nevertheless 𝜔𝐴(𝜔) and 𝐵(𝜔) should verify the Kramers-Kronig relations, which predict  

𝐴 → 0 if the area below 𝐵(𝜔) tends to zero. Actually, this ‘added mass term’ can be neglected, as 

will be verified later. 

 

III – Results 

 
III – 1  Sinusoidal excitation of a blade 

 

 

Figure 3. Blade of the 15MW IEA turbine 

 

The blade of the 15MW IEA turbine [8] is excited at its tip by a sinusoidal force at 1Hz (Figure 

4). In the direction of the force, the two closest modes are F1=0.52Hz and F2=1.48Hz. The blade is 

discretized with 30 elements. The dynamic simulations are performed with a Newmark algorithm in 

time. This test is run over 100s with the retardation function integrated over the past 30s at most. The 

triangle function is used, and damping is applied on the velocity of each node. 

 

 

Figure 4. Comparison of Rayleigh damping (left) and retardation damping (right) 

The response spectrum of the solution without damping is compared with the Rayleigh damping 

on the stiffness only (i.e.  =0) and the retardation damping with the first modal frequency F1 is 
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targeted with a frequency range of f=+/-0.02Hz. For both damping methods, the direct response to 

the excitation (response at 1Hz) is unchanged. As expected, the Rayleigh damping on stiffness damps 

both modal response at F1 and F2 and since damping on stiffness is used the higher frequency is the 

most damped. With the retardation function only the targeted frequency F1 is damped, the energy 

response at F2 is very similar to the undamped response. 

 

III – 2  Sinusoidal excitation of the turbine 

 

 

Figure 5. Blade of the 15MW IEA turbine 

 

In this section, the whole 15MW turbine is modelled including the tower (Figure 5). The blades 

are in parked mode and a turbulent wind field is applied aligned with the turbine with an average hub 

height velocity of 30m/s. As in the previous section, simulations are performed with and without 

damping over 500s. In Figure 6, the response on 3 modes (F1=0.28s, F2=0.62Hz, F3=1.67Hz) is 

observed in the wind direction at bottom blade root. the damping is applied through the retardation 

function on the first mode (F1). As observed with the single blade, the response energy is reduced for 

the targeted mode while the other modes have similar response as the case without damping. 

 

 

Figure 6. Blade of the 15MW IEA turbine 
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The retardation functions are shown in Figure 7. In the top graphs, the function used to dampen 

mode 1, then mode 2 and finally both modes 1 and 2 indicates that the function are closed to 0 in 

about 5s with the triangle function. For mode 1 damping, increasing the frequency range leads to a 

slower convergence to 0. Similarly, the triangle function is more efficient to converge to 0 than the 

step function. Faster convergence to 0 decreases the time for integration of the memory effect and 

improves the simulation time. Therefore, triangle functions are used for all results below. For the 

frequency range, other considerations might come into play (precision on the modal frequency). 

 

 

Figure 7. Retardation function for damping on frequencies F1, F2, F1 and F2 (top); with s range of 

+/-0.02Hz versus 0.05Hz for F1 (middle); with a triangle versus step function for F1 (bottom) 
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Coming back to the global turbine model, the damping formulation is checked by targeting either 

one mode or two modes. In Figure 8, the response spectrum of the force in the wind direction is 

plotted for cases with damping on F1 only, F2 only, F1 and F2, F1 and F3. The main observation is 

that any damping frequency can be targeted and damping of one frequency has only a very small 

effect on other frequencies. Therefore, damping amplitude can be defined independently per 

frequencies. 

 

 

Figure 8. Response spectrum of bottom blade root force in the wind direction – damping on F1 only 

(top left) – damping on F2 only (top right) – damping on F1 and F2 (bottom left) – damping on F1 

and F2 versus damping on F1 and F3 (bottom right) 

 

A final test is performed with the turbine in production on a floater. The turbine is in a turbulent 

wind with an average hub height velocity of 12m/s. The wave peak period is at 12s. The tower modes 

in the x-direction (turbine out-of-plane) and y-direction (turbine in-plane) are respectively at 0.37Hz 

and 0.33Hz.  Acceleration spectra in both directions are shown in Figure 9 with damping on one of 

the modes or both modes. Again, even for close modes, it is possible to pinpoint the frequency 

associated to a damping ratio. Indeed, the frequency at 0.37He can be damped without damping the 

frequency at 0.33Hz. 
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Figure 9. Response of acceleration at Nacelle, turbine in production in a 12m/s turbulent wind and 

12s peak wave period – damping on in-plane/out-of-plane modes 

 

 

III – 3  Relation to damping ratio 

 

As shown in the previous sections, it is possible to target specific frequencies in the response 

spectrum and adjust the damping level. A remaining question is the amount of damping to introduce 

and therefore the link between the amplitude applied on the unitary functions and the Rayleigh 

coefficients or the modal damping ratio. Indeed, damping ratio (or logarithmic decrement) is a 

quantity which can be obtained from measurement of the system’s response. The damping ratio is 

linked to the logarithmic decrement  by: 

 

ξ =
δ

√4𝜋2+𝛿2
   or  ξ =

δ

2𝜋
, δ ≪ 1       ( 13 ) 

 

A simple beam model is used, the beam is clamped at one end and free at the other. It is excited 

on the first second of the simulation by an imposed displacement at the clamped end and then the 

motion is stopped generating a decay test at the free end. The first mode of the beam is at 3.55Hz. As 

this is an excitation on a single mode, Rayleigh damping is defined with the stiffness term only with 

 =0 and b=K. In Figure 10, decay tests are compared with Rayleigh damping and the triangle 

function with an amplitude a equal to the Rayleigh damping b. It indicates that the damping ratio are 

very similar with the two methods. Then for the retardation method, the bottom graph of Figure 10 

indicates that the damping is linearly dependent on the amplitude but almost independent on the 

frequency range.  
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Figure 10. Decay test; Comparison Rayleigh damping and Retardation method (top) – Influence of 

amplitude and frequency range on retardation method (bottom) 

 

For a simple sinusoidal motion, the displacement, velocity and damping force can be expressed 

as  

 

𝑥 = 𝑥𝑜 sin𝜔𝑡, 𝑥̇ = 𝑥𝑜 𝜔cos𝜔𝑡, 𝐹𝑑 =  𝑏𝑥𝑜  𝜔cos𝜔𝑡    ( 14 ) 

For the retardation damping with triangle function and considering Δ𝜔 = Δ𝜔+ = Δ𝜔−, the force 

is then: 

 

𝐹𝑑 =
2𝑎𝑥𝑜𝜔

𝜋∆𝜔
[𝐼1 𝑐𝑜𝑠 𝜔𝑡 + 𝐼2 𝑠𝑖𝑛 𝜔𝑡]      ( 15 ) 

With 

 

𝐼1 = ∫
2𝑐𝑜𝑠2𝜔𝜏−𝑐𝑜𝑠𝜔𝜏 𝑐𝑜𝑠(𝜔−∆𝜔)𝜏−𝑐𝑜𝑠𝜔𝜏𝑐𝑜𝑠(𝜔+∆𝜔)𝜏

𝜏2
𝑑𝜏

𝑡

0
    ( 16 ) 

𝐼2 = ∫
2 𝑠𝑖𝑛𝜔𝜏𝑐𝑜𝑠𝜔𝜏− 𝑠𝑖𝑛𝜔𝜏 𝑐𝑜𝑠(𝜔−∆𝜔)𝜏−𝑠𝑖𝑛𝜔𝜏𝑐𝑜𝑠(𝜔+∆𝜔)𝜏

𝜏2
𝑑𝜏

𝑡

0
   ( 17 ) 
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The first integral is in phase with velocity while the second integral is in phase with acceleration. 

Focusing on 𝐼1: 
 

 lim
𝑡→0
𝐼1 = Δ𝜔

2 𝑡         ( 18 ) 

And using [9]: 

 

 lim
𝑡→+∞

∫
cos(𝑐𝑥) cos(𝑑𝑥)

𝑥2
𝑑𝑥

𝑡
= −

𝜋

4
(|𝑐 − 𝑑| + |𝑐 + 𝑑|)     ( 19 ) 

Then 

 lim
𝑡→+∞

𝐼1 =
𝜋Δ𝜔

2
          ( 20 ) 

Comparing with the expression for the Rayleigh damping, the limits are then: 

 

 𝑏
𝑡→0
→ 

2𝑎Δ𝜔

𝜋
𝑡,   𝑏

𝑡→+∞
→   𝑎          ( 21 ) 

 

 

Figure 11. Function 𝐼1and 𝐼2together with 𝐼1 limits 

 

As presented in Figure 11, the damping force in phase with acceleration is negligible compared 

to the force in phase with the velocity. The amplitude defined on the unitary triangle function tends 

towards K, therefore the retardation function for the ith mode defined by circular frequency 𝜔𝑖 and 

damping ratio 𝜉𝑖 can be defined as: 

 

Ri(t) =
2

π
∫

2𝜉𝑖

𝜔𝑖
𝐾B(ω) cosωt dω 

∞

0
       ( 22 ) 

 

IV – Conclusion 

 
In modeling turbine response to environmental loadings, specific damping ratios are provided by 

turbine suppliers either for individual blades of for the whole turbine and tower system. In time 

domain simulation (without projection on the modal basis), the classical Rayleigh damping 

formulation is too limited to introduce these ratios on several modes without impacting the global 

system response. A formulation based on a retardation function (an impulse response function) is 

used that is able to target individual frequencies with a specific damping amplitude and with minimal 

cross influence between frequencies response. Such formulation can then be used to model the 

complete floating wind turbine.   
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