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Résumé

On s’intéresse à la propagation des ondes à la surface de l’eau dans une topographie
variable en temps consistant en des plaques verticales infiniment minces qui oscillent au
cours du temps. On commence par le problème de réflexion et de transmission d’une
onde plane par une plaque verticale immergée dans un canal et on retrouve les coeffi-
cients de scattering en fonction de la fréquence de l’onde incidente et de la hauteur de la
plaque. On présente une étude théorique basée sur le théorème de Floquet pour résoudre
le problème lorsque la plaque oscille verticalement dans l’approximation basse fréquence
et on observe la génération des harmoniques. On définit aussi la limite quasistatique pour
une oscillation suffisamment lente de la barrière, une approximation qui apparâıt assez
robuste. La generation des harmoniques est aussi observée expérimentalement dans le cas
d’une profondeur d’eau intermédiaire. Enfin, en utilisant un réseau périodique de plaques
on étudie théoriquement, numériquement et expérimentalement le problème de déviation
d’un paquet d’ondes, en passant d’un milieux isotrope à anisotrope à un instant donné.

Summary

This study focuses on the propagation of water waves over a time-varying topogra-
phy, which consists of thin vertical plates as metamaterials. Starting with the scattering
problem of a plane wave incident on a vertical submerged plate inside a water channel,
we extract the scattering coefficients as a function of the frequency and the plate height.
We then implement a Floquet theory approach for the scattering of the monochromatic
wave by a vertically oscillating plate in the shallow water approximation, and show that
n-harmonics are generated around the fundamental frequency. For a slowly oscillating
plate we propose a quasistatic approximation which is in fact quite robust. The effect of
harmonic generation is also observed experimentally in the intermediate depth regime.
Finally, we extend the study to the case of a periodic array of plates sitting on the fluid
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bottom in a two-dimensional space and investigate analytically, numerically and expe-
rimentally the propagation of shallow water wavepackets over a time-varying medium,
which switches from isotropic to anisotropic at a given time.

I – Introduction

Time-varying systems that involve wave-matter interactions have been widely explo-
red over the years, as they reveal fascinating wave phenomena that are applicable across
various fields, from quantum mechanics to condensed matter physics and fluid dynamics.
These systems have introduced innovative methods for controlling and harnessing waves
through effects like time reversal [1], frequency conversion [2], parametric amplification [3],
temporal waveguiding [4]. Ever since Morgenthaler’s groundbreaking work in the 1950s [5]
on waves traveling through media with rapidly changing phase velocity, the research on
time-varying metamaterials as a method to manipulate waves has expanded considerably
[6]. Comprehending the interaction of waves with time-varying scatterers can be complex
and frequently necessitates the creation of new theoretical and numerical approaches. For
instance, Floquet theory has been long applied for the scattering of waves by periodically
driven systems, as discussed in [7] and [8]. In the field of water waves, the topography
can significantly influence the wave dynamics and some studies have already been made
in that context, more specifically on moving underwater barriers and time-varying topo-
graphies (see [11] and [12]). In this work, we concentrate on vertical rigid plates with a
small width, capable of undergoing prescribed vertical motion, and aim to explore various
methods of controlling water waves. By using these plates as metamaterials we uncover
wave phenomena such as harmonic generation (in the case of a single plate) and wave
deflection (for a plate array).

II – Single Oscillating Plate

II – 1 The static plate for any water depth regime

II – 1.1 Governing Equations

We consider an incompressible, irrotational and inviscid fluid of depth h+, which ex-
tends horizontally along the x axis in an unbounded domain, and an infinitely thin plate
of height hp standing at the fluid bottom at location x = 0 (see Fig. 1). We wish to
study the scattering problem of a plane wave arriving at the plate from x = −∞, and
retrieve the scattering coefficients for any given dimensionless frequency of the incident
wave ω

√
h+/g. In the classical linearised water-wave theory (introduced in the textbooks

[13]-[16]) and for a time-harmonic regime (convention e−iωt), this problem reads as :
∆Φ = 0, in Ω
n̂ · ∇Φ = 0, on Γ
∂Φ
∂z

= ω2

g
Φ, z = 0,

(1)

where Φ(x, z, t) stands for the velocity potential, ω is the frequency of the monochromatic
wave, g the acceleration of gravity and n̂ the unit normal vector on Γ. The system (1)
can be solved via mode matching method in order to recover the two-dimensional field
for any given frequency and dimensionless plate height µ = hp/h

+. In Fig. 2a we show an

example of the wave-field profile for ω
√
h+/g = 1, µ = 0.5 and in Fig. 2b we depict the

variation of the scattering coefficients with ω
√
h+/g for two cases of plate heights. Notice
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that reflection is the strongest in the intermediate depth regime and that by increasing
the plate height we amplify the reflection of the incident wave.

Figure 1 – Schematic representation of wave scattering by an infinitely thin plate inside
a channel.

II – 1.2 Shallow water model with jump conditions

In the long-wavelength limit, i.e. when the typical wavelength is much larger than
the water depth, the wave-field becomes quasi-homogeneous along z, which allows for the
simplification of the system (1) into one partial differential equation for the field at the
surface. As it has been already addressed by Tuck [12], by starting from the system (1)
and applying matched asymptotic expansions, one can obtain a reduced one-dimensional
model where the effect of the plate is encapsulated with jump conditions at x = 0. This
model is expressed as

∂2ϕ

∂x2
− 1

c20

∂2ϕ

∂t2
= 0, (2a)

[ϕ]0
+

0− = 2Bµh∂xϕ|0 , [∂xϕ]
0+

0− = 0, (2b)

where ϕ(x, t) denotes now the z-independent velocity potential, c0 =
√
gh is the velocity

of shallow water waves and Bµ is known as the blockage coefficient. Bµ can be determined
in closed form for a range of fluid bottom profiles (as discussed in [9]) and for an infinitely
thin plate is defined as

Bµ = − 2

π
ln
[
sin

(π
2
(1− µ)

)]
. (3)

By considering once again the harmonic regime, we can write that ϕ = ℜ{f(x)e−iωt}. For
x < 0, the solution is simply given by the sum of the incident wave and the reflected wave,
f− = eikx + Rswe

−ikx, while for x > 0 the solution consists of a transmitted wave, f+ =
Tswe

ikx, with k the wavenumber. By using these relations when evaluating the boundary
conditions at x = 0 (Eq. (2b)), one finds that in the shallow water approximation

Rsw = − ikhBµ

1− ikhBµ

, Tsw =
1

1− ikhBµ

. (4)

As illustrated in Fig. 2b, the approximation given by Eq. (4) (which is shown with
the dotted red line) can efficiently describe the wave dynamics up to approximately
ω
√
h+/g = 0.2, which gives us the limit of this shallow water regime.
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Figure 2 – (a) Wave field for ω
√
h+/g = 1, µ = 0.5. (b) |T | and |R| with respect to

ω
√
h+/g for µ = 0.875, 0.75 and the low frequency approximations given by Eq. (4).

II – 2 The vertically oscillating plate

II – 2.1 Floquet scattering in the shallow water regime

In this part we are interested in the time-varying case where hp = hp(t) and wish to
understand the interaction of the monochromatic wave with the moving barrier in the
shallow water limit. For this purpose, we choose to work with the simplest case where the
time dependence is incorporated in the blockage coefficient, such that

Bµ(t) = Bµ,0 +Bµ,1 cos(ωpt), (5)

with ωp the characteristic parameter of oscillation. Consequently, this leads to a more
complex plate motion, defined as

µ(t) = 1− 2

π
asin

[
exp

(
−π
2
Bµ(t)

)]
. (6)

Our starting point is the wave equation (2a) supplemented with the boundary condi-
tions (2b), where Bµ follows Eq. (5). Note that since the plate is assumed to be infinitely
thin, it does not act as a source when oscillating, which means that the reduced model
(2b) also holds for the time-varying case with now a time-dependent discontinuity condi-
tion for ϕ. Hence, in order to solve this problem, we implement the Floquet theorem and
write the solution as

ϕ = ℜ{e−iωtψ}, ψ(x, t) = ψ(x, t+ Tp), (7)

with Tp = 2π/ωp. Since ψ is periodic, we can Fourier expand it as

ψ(x, t) =
∑
n

ψn(x)e
−inωpt, (8)

with n ∈ Z and the Fourier modes e−inωpt satisfying the orthogonality relation :

1

Tp

∫ Tp

0

ei(m−n)ωptdt = δmn. (9)

Substituting Eqs. (7) and (8) into Eq. (2a), projecting on e−inωpt and utilizing Eq. (9), we
obtain the relation

d2ψn

dx2
+ k2nψn = 0, kn =

ωn

c0
, (10)
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where ωn = ω + nωp. Thus, we can express the solution for ψn in the regions x < 0 and
x > 0 as follows :

ψ−
n (x < 0) = δ0ne

iknx + rne
−iknx, ψ+

n (x > 0) = tne
iknx, (11)

with rn and tn the scattering coefficients of each harmonic. We proceed then to evaluate the
jump conditions by plugging relations (11) in Eq. (2b), in order to derive the expressions
for rn and tn. By doing so, we find that

t⃗ = b⃗− r⃗, r⃗ = −(2I− V)−1Vb⃗, (12)

with
(V)m,m′ = iBµ,1h (km′+1δm,m′+1 + km′−1δm,m′−1) + 2iBµ,0hkmδm,m′ , (13)

(b)m = δ0m and I denoting the identity matrix. Notice that rm = −tm for m ̸= 0,
which arises from the symmetry of the problem, and that there is a coupling between the
harmonics, meaning that the incident wave is scattered into n-sidebands with frequencies
ωn.

Besides this Floquet formalism of the problem, which describes the full system for
any given value of ωp/ω as long as the shallow water approximation is valid, it is worth
exploring a limiting case where the plate oscillates much slower than the period of the in-
cident wave, i.e. when ωp/ω ≪ 1. In this quasistatic adiabatic approximation, the solution
for the reflected and the transmitted waves can be constructed by considering the static
solution with the scattering coefficients of Eq. (4), with the modified blockage coefficient
of Eq. (5). Hence, we write that

fr,QS = − ikh(Bµ,0 +Bµ,1 cos(ωpt))

1− ikh(Bµ,0 +Bµ,1 cos(ωpt))
e−i(kx+ωt), (14)

ft,QS =
1

1− ikh(Bµ,0 +Bµ,1 cos(ωpt))
ei(kx−ωt), (15)

with fr,QS and ft,QS denoting the reflected and transmitted waves in this quasistatic (QS)
limit. Then, we expand the two components in a Fourier series :

fr,QS =
∑
n

r̃ne
i(kx−ωnt), ft,QS =

∑
n

t̃ne
i(kx−ωnt), (16)

with ωn = ω+nωp. Combining Eqs. (14), (15) with the relations (16), then projecting on
e−inωpt and using the orthogonality of the modes, one can express the coefficients r̃n and
t̃n as

r̃n =
1

Tp

∫ Tp

0

ikh(Bµ,0 +Bµ,1 cos(ωpt))

ikh(Bµ,0 +Bµ,1 cos(ωpt))− 1
e−inωptdt, (17)

t̃n =
1

Tp

∫ Tp

0

1

1− ikh(Bµ,0 +Bµ,1 cos(ωpt))
einωptdt. (18)

Then, one can find explicit relations for the above integrals, by applying contour integra-
tion. In the end we find that the coefficients do not depend on ωp, as expected, and that
they are symmetric around the fundamental, i.e. r̃n = r̃−n for n ̸= 0. The latter is not
true in the previous Floquet formalism.

In Fig. 3b, c we depict the harmonics which are reproduced for the plate movement of
Fig. 3a, where the bars refer to the |rn| obtained by means of the Floquet formalism and
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Figure 3 – (a) Bµ(t) and µ(t) in one characteristic period of oscillation Tp. (b,c) Ampli-

tudes |rn| of the reproduced n-harmonics for ω
√
h+/g = 0.2, ωp/ω = 0.25 (in (b)), and

ωp/ω = 10−3 (in (c)).

the blue points depict the quasistatic result. In this numerical application, the imposed
plate movement was selected to have a high amplitude, with the plate almost reaching
the water surface, in order to induce the most reflection in this shallow water regime. The
dimensionless frequency of the incident wave is set as ω

√
h+/g = 0.2 and ωp = ω/4 on

panel (b) and ωp = ω/1000 on panel (c). It is evident that the closer we move to the limit
where ωp/ω ≪ 1, the better the agreement between the two methods (|rn| → |r̃n|). In
addition, the sidebands at n = ±1 reach roughly 50% the amplitude of the fundamental
frequency and the latter is very well captured by the quasistatic limit in both cases of plate
oscillation. In order to demonstrate the robustness of the quasistatic approximation in this
study, we focus on the fundamental harmonic n = 0. We consider two limit values of µ(t),
specifically the maximum height µmax = 0.95 and the mean value of µ(t), µmean = 0.698,
and wish to compare |r0| for these static cases versus for the time-varying barrier. As
we can see in Fig. 4, |Rsw,µmean| < |r0| < |Rsw,µmax | for all values of ω, while |r0| is
practically unaffected by the changes in ωp. This means that as long as we remain in
the shallow water approximation, one can efficiently describe the system with respect to
the reflection coefficient of the fundamental harmonic with the explicit relation of the
quasistatic approximation.

Figure 4 – Reflection coefficient of a non-oscillating plate for two different heights
µmean = 0.698, µmax = 0.95 and the reflection coefficient of the fundamental harmo-
nic for the plate oscillation of Fig. 3a when ωp

√
h+/g = 0.2, 0.1 and the result of the

quasistatic approximation (Eq. (17)).
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II – 2.2 Experimental observation in intermediate depth

In the experimental part of this work we impose a harmonic plate oscillation µ(t)
and explore the generation of harmonics in the intermediate depth regime. For this pur-
pose, a channel of 3m length and 8cm width is used, which has also a narrow slit in
the middle enabling the plate to vertically cross over the channel bottom while being
externally connected to a linear motor (see Fig. 5a). The movement of the motor can be
very accurately controlled with a software and the plate motion is isolated in a outside
cavity attached to the channel. The ongoing experiments have indeed shown that harmo-
nics are generated at frequencies f0 ± nfp, n ∈ Z, with f0 the frequency of the incident
wave and fp the frequency of plate oscillation. More precisely, in Fig. 5b we illustrate the
Fourier transform of the transmitted field measured with a point laser at a given location
(x = +30cm) with f0 = 2.5Hz, fp = 0.5Hz, h+ = 4cm and hp ∈ [1.1, 3.6]cm. Notice that
the incident wave is amplified by 35% for an oscillating barrier.

Figure 5 – (a) The vertical plate inside the water channel. (b) Fft of the transmitted
field measured at x = +30cm when the plate is static at position hp = 3.6cm (green line),
when the plate is oscillating (blue line) and when the plate oscillates with no incident
wave (red dotted line).

III – Time-varying plate array

III – 1 Theory and Numerics

Let us now consider a periodic array of infinitely thin plates sitting on the fluid bottom
in a two-dimensional (2D) unbounded domain, as illustrated in Fig. 6a. It has been already
shown [10] that the plate array acts as an anisotropic medium for water waves in the long
wavelength approximation and that in this limit the wave dynamics can be effectively
described by an anisotropic 2D wave equation :

∂2η

∂t2
− g∇ · (h∇η) = 0, h =

(
hx 0
0 hy

)
, (19)

hx < ⟨h−1⟩−1
, hy = ⟨h⟩−1, ⟨h⟩ = φh− + (1− φ)h+, with h+, h−, φ defined in Fig. 6a and

η signifying the surface elevation. Then, the time-variation is introduced in the following
way : We consider a flat and horizontal fluid bottom for t < 0, which is switched into
a structured bottom profile at t = 0 (and vice-versa). This means that the medium is
modified from isotropic to anisotropic at t = 0, so that h(t < 0) = h+, h(t > 0) = (hx, hy).
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For a medium switch in time, occuring much faster than the wave period, the wave
sees a time interface from which it is scattered. When additionally the new medium is
anisotropic, the wave is deflected since the angle of energy flow θS is different than the
angle of the wave vector θ. As it is stated in [4], one can derive the reflection R and
transmission T coefficients as well as θS for the wave scattering by a time interface. These
expressions are found to be

R =
ω1 − ω0

2ω1

, T =
ω1 + ω0

2ω1

, θS = tan−1

(
tan(θ)

hy
hx

)
. (20)

with ω0 = k
√
gh+, ω1 = k

√
g
(
hx cos2 θ + hy sin

2 θ
)
. By solving Eq. (19) numerically, for

h = h(t), we obtain the scattering coefficients as a function of the incident angle, which
show excellent agreement with the theoretical expressions of Eq. (20) (see Fig. 6b ). In
Fig. 6c we illustrate a case of wave packet deviation, where l = 0.8cm, φ = 0.0625, h+ =
2cm, h− = 0.5cm, f0 = 6Hz, θ = 20o.

Figure 6 – (a) Schematic representation of the submerged plate array. (b) Scattering
coefficients R, T and the angle of energy flow θS as a function of angle of incidence θ
given from Eq. (20) (in continuous lines) along with the ones computed by solving Eq.
(19) with h = h(t) switching to an anisotropic medium at t = 0 with characteristics l =
0.8cm,φ = 0.0625, h+ = 2cm, h− = 0.5cm (black symbols). (c) Numerical demonstration
of the wavepacket deflection for the previous parameters of the plate array and with
θ = 20o, f0 = 6Hz.
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III – 2 Experiment

In the experimental part of this project, we have designed a setup which allows the
plate array to be mounted at the fluid bottom (or to descend) at a given time by means
of a mechanical switch. More precisely, a circular disc of 55cm diameter is pierced into
slits from where the plate array can pass vertically in order to switch the topography
from a constant one to a structured one (and vise versa). Below this disc there is a
whole mechanism mounted inside the water tank which guides this upward movement of
the plate array. Fig. 7 displays the top view of the experimental setup, specifically the
topography change when we pass from the initial anisotropic medium to the isotropic one
at t = 0.

Figure 7 – Experimental setup showing the bottom profile before and after the switch
at t = 0.

For this configuration, i.e. where the plate array is abruptly dropped at t = 0, expe-
rimental results have been obtained which clearly show the deflection of the wavepacket
(see Fig. 8). For negative times, the generated wavepacket travelling in the anisotropic
medium deviates downwards according to the theoretical prediction. Then, at t = 0 when
the medium is switched into an isotropic one, the wavepacket changes trajectory and
moves straight, as shown with the gray arrow.

Figure 8 – Experimental demonstration of the wavepacket deviation at three different
snapshots (t = −0.47s, t = 0s and t = 0.7s) when the medium is switched from anisotropic
to isotropic at t = 0. The wavepacket follows the path illustrated with the gray arrow.
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IV – Conclusion and perspectives

We have discussed two problems which aim to control water waves using time-varying
vertical plates as metamaterials. In the first one, we tackled the scattering problem of
a monochromatic wave from an infinitely thin plate, which is vertically oscillating. We
proposed a Floquet theory approach in the shallow water approximation and showed that
in that limit n-harmonics are generated around the fundamental frequency of the incident
wave ω, with the first sidebands (n = ±1) representing an important percentage of the
reflected amplitude of the fundamental, regardless of the frequency of oscillation ωp. In
addition, for a slowly oscillating plate, i.e. when ωp ≪ ω, we implemented a quasistatic
adiabatic approximation and found explicit relations for the scattering coefficients, which
match the ones recovered by the Floquet theory approach as ωp → 0. This quasistatic
approximation appears to be particularly robust, as it captures perfectly the reflection
coefficient of the fundamental frequency for any ωp. Furthermore, the generation of har-
monics has been also observed experimentally in the intermediate depth regime for a
harmonically oscillating plate and the experimental works are continuing with the aim to
fully quantify and characterize the wave dynamics in any water depth regime.

In the second part, we demonstrated how one can deflect a wavepacket travelling in
a two-dimensional space by combining an anisotropic medium with time-variation, which
is the water-wave analog of the temporal aiming first introduced in optics [4]. In this
context, we used an array of infinitely thin plates which played the role of an effective
anisotropic medium in the shallow water approximation, and tuned in the time variation
by lifting or dropping the plates at the fluid bottom at a given time so as to switch the
effective medium. We retrieved numerically the scattering coefficients and the angle of the
energy flow for any angle of incidence by solving the anisotropic two-dimensional wave
equation, which agree with the analytical predictions. Finally, in the experimental part of
this project we showed an example of wavepacket deviation, starting from the anisotropic
medium and switching it to isotropic at t = 0. This first observation proves that the
wavepacket can ideed be guided in space by exploiting this plate array metamaterial along
with time-variation, and more exploration is currently being done with our experimental
setup in order to find new aspects for the control the wavepacket propagation.
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