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Summary

The study aims to investigate wave loads on a box barge with a moonpool and dam-
ping plates in a two-dimensional problem using experimental, numerical, and theoretical
methods. An experiment was conducted in a two-dimensional wave flume at Ecole Cen-
trale Marseille (ECM). The experimental model, composed of two pontoons, each equip-
ped with a horizontal skirt (damping plate) in correspondence with its bottom, was fixed
at the tank. Two configurations, with and without skirts, were tested in regular waves
with various wave steepness and wave periods. A load cell was installed on the model to
measure wave loads. Resistive wave gauges were used to measure free-surface elevations
around the model by focusing on the incident, reflected, and transmitted waves. Dedica-
ted numerical analysis was performed for one wave steepness using a Navier-Stokes solver
(CFD) based on Openfoam. A theoretical model based on the potential flow theory was
developed to compute the linear wave elevation and wave excitation forces using eigen-
function expansion method on decomposed domains, including the dissipation effect. The
CFD and theoretical models are generally able to predict the wave excitation forces. Fur-
thermore, by introducing dissipation into the moonpool, the theoretical model was able
to capture the mean drift forces using the far-field method.

I – Introduction

Floating offshore wind turbines are a cost-effective way to harvest wind energy, but
the platform faces challenges in withstanding harsh wave environments. To address this
challenge, various types of floaters have been studied. Some concepts have progressed from
a single prototype to larger-scale implementations for floating wind farms.
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One notable type of floater is a box barge-type floater with a moonpool [1]. The
moonpool reduces the water plane area of the barge, which optimizes the stability and
performance of the floating system. Choisnet (2015) [2] described how the moonpool, if
opportunely configured, could partially reduce the heave motion induced by the waves
through the load generated on the floating structure by the mass of water oscillating in-
side the moonpool. Additionally, the floater can be equipped with damping plates (skirts),
gaining more hydrodynamic added mass and damping of the floating system [3]. As a re-
sult, both moonpool and the plates reduce wave-induced motion response to the dominant
wave periods, particularly by enhancing energy dissipation for motions of interest.

The moonpool serves various marine and offshore applications, facilitating operations
such as drilling risers, dynamic cables, and remotely operated underwater vehicles. Ho-
wever, the free surface inside the moonpool can behave violently at resonance, making
it essential to predict and mitigate these effects. Molin (2001) [4] identified two types of
resonant behaviors theoretically based on linearized potential flow theory : piston and
sloshing modes. The piston mode was further investigated using a two-dimensional barge
with a moonpool through forced heave oscillation tests conducted in the wave flume [5].
Wave-induced responses were experimentally studied in regular waves [6], and compared
with the two numerical methods that solve the Laplace equation and the Navier-Stokes
equations, respectively. Additional structures such as cofferdams or recesses were exa-
mined both experimentally and numerically to investigate the reduction of free surface
behavior in the moonpool [7, 8].

The potential flow theory is effective in predicting the resonant frequency, but it tends
to overestimate the resonant response. Chen (2004) [9] introduced the concept of a fairly
perfect fluid, following Guével (1982) [10]. This approach involves adding a linear dissipa-
tion term to the momentum equation for an incompressible, inviscid fluid and irrotational
flow. It has been validated against experimental results, showing efficiency in predicting
free surface elevation by identifying the appropriate level of dissipation from high-fidelity
methods, such as experiments and Navier-Stokes equation solvers (CFD). This formula-
tion is implemented in Boundary Element Method (BEM) solvers and is applied to various
engineering applications, including gap resonance, moonpools, and sloshing tanks.

Earlier research [11] examined the motion responses of the box barge-type floater with
a moonpool and skirts in regular waves using model-scale experiments and CFD methods
for both model and full-scale simulations. In Adrien (2018) [12], the full geometry was
then simplified into a fixed two-dimensional box-shaped pontoon, both with and without
skirts, while excluding the moonpool. This simplification aimed to analyze the effects
of the skirts on horizontal mean drift forces and demonstrated that energy dissipation
increases due to the presence of the skirt.

The present study extends the previous research [12], by studying the wave loads
exerted on a fixed two-dimensional box barge equipped with a moonpool and horizon-
tal skirts fixed in correspondence with its bottom through experimental, numerical, and
theoretical methods. Two configurations, one with skirts and one without, are studied in
regular waves. The experimental model and setup in a wave flume are first detailed. The
numerical model is presented and validated against experimental measurements of free
surface elevation. Theoretical formulations, based on the fairly perfect fluid assumption
[9, 10], are developed by considering the moonpool and skirts using the domain decompo-
sition method along with eigenfunction expansions. The measured wave excitation forces
are compared with the numerical and theoretical calculations, as well as horizontal mean
drift forces obtained from the far-field method. Finally, a discussion focuses on the effects
of moonpools and skirts on the wave loads.
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II – Experiment

An experiment was conducted in a two-dimensional wave flume at Ecole Centrale
Marseille (ECM) presented in the sketch of Figure 1, which is 16.7 m in length, 0.65 m in
width, and 0.628 m in water depth.

Camera visualization

Absorbing beach

X=0

Wave maker

5  wave gauges5  wave gauges
1  incident wave gauges

Incident waves

Figure 1 – Experimental setup in the two-dimensional wave flum at ECM.

The flume is equipped with a flap wave maker and a wave-absorbing beach to minimize
the wave reflection effect. The side wall of the flume is made of glass, which allows a camera
to capture free surface deformation and flow field.

The experimental model consisted of two pontoons (blue) and skirts (black), with a
moonpool in the middle. The main dimensions are given in Table 1 and presented in the
sketch of Figure 3. The reduced scale model could be considered representative of a real
wind turbine floating foundation by assuming a scale ratio of around 1/50. The model
was designed with a breadth of 0.644 m to prevent contact with the tank wall, taking into
account the measurement of wave-induced forces and the use of a freely floating test in
the upcoming experimental campaigns. This design resulted in a 3 mm gap on both sides.

Two configurations were considered, with and without skirts, in order to investigate
the effects of skirts on the wave excitation forces. Regular waves were tested with various
wave steepness (H/λ, with wave height H and wavelength λ) to examine nonlinearity
and thirteen wave periods T ranging from 0.55 to 2.5 seconds. In this study, three-wave
steepnesses (H/λ = 0.01, 0.02, 0.03) were selected to verify the numerical and theoretical
models.

Table 1 – Main dimensions of the model.

Main dimensions Unit Value
Length of model L m 0.84
Breadth of model B m 0.644
Length of pontoon lp m 0.2

Length of damping pool ld m 0.44
Length of skirt ls m 0.06

Thickness of skirt ts m 0.005
Draft d1 m 0.14

Depth of skirt d2 m 0.135

Thirteen resistive wave gauges were placed in the tank to measure the wave deforma-
tion around the model. One wave gauge was positioned near the wave maker to measure
the incident wave elevation, and two groups of five wave gauges were placed before and
after the model to measure the reflected and transmitted wave elevations. The two re-
maining gauges were positioned inside the moonpool to monitor the behavior of the free
surface on each side of the wall. The model was fixed to a carriage and connected through a
6-axis load cell to measure the wave excitation loads on the model. The data was acquired
at a sampling rate of 200 Hz. Furthermore, a video camera with a resolution of 2064x1600
pixels and a frame rate of 100/s was used to capture the flow around the model.
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III – Computational Fluid Dynamics

Dedicated numerical simulations were performed using a two-phase incompressible
Reynolds Averaged Navier-Stokes Equations (RANSE) solver, foamStar. The numerical
code has been co-developed by Ecole Centrale Nantes and Bureau Veritas [13, 14] for wave
generation and floating body dynamics. It is based on interDyMFoam in OpenFOAM,
where the volume of fluid (VOF) method is employed for capturing the interface with a
volume fraction α, where 0 for air, 1 for water. Practically, the free surface is defined as
the isosurface α = 0.5.

The governing equations of the mixture fluid written according to the Navier-Stokes
equations are presented as follows :

∇ · u = 0 (1)

∂(ρu)

∂t
+∇ · (ρuu) = −∇pd − g · x∇ρ+∇ · (µ∇u) +∇µ · (∇u)T (2)

∂α

∂t
+∇ · (αu) + Cα∇ · {α (1− α)ur} = 0 (3)

where u is the fluid velocity and ur = (uwater − uair) is the relative velocity between
water and air at the interface. ρ is the fluid density, µ is the dynamic viscosity, g is the
gravitational acceleration. pd = p−ρg ·x is the dynamic pressure and p is the pressure. Cα

is an interface compression term, which enables the sharp interface to be kept artificially.
A single wave steepness, H/λ = 0.03, was studied with seven wave periods (0.8, 0.95,

1.1, 1.25, 1.4, 1.55, 1.8 sec). The free surface k − ω SST turbulence model was used with
the 2nd order Crank-Nicolson (CN, 2nd order) time integral scheme. The total length of
the two-dimensional computational domain is 5λ, involving the wave forcing zone [15] in
the inlet and damping zone in the outlet, resulting in 2λ of the pure CFD domain. The
grids on the free surface, as well as the skirts and corners of the pontoons, were refined as
illustrated in Figure 2. The boundary conditions used in this study are listed in Table 2.

Figure 2 – Two-dimensional computational domain and boundary conditions.

Table 2 – Boundary conditions for the free surface k − ω SST turbulence model.

Quantity inlet/outlet top bottom front/back body
alpha waveAlpha inletOutlet zeroGradient empty zeroGradient
U waveVelocity pressureInletOutletVelocity fixedValue empty movingWallVelocity

p rgh zeroGradient totalPressure zeroGradient empty fixedFluxPressure
k zeroGradient zeroGradient zeroGradient empty kqRWallFunction

omega zeroGradient zeroGradient zeroGradient empty omegaWallFunction
nut calculated calculated calculated empty nutUSpaldingWallFunction
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IV – Potential flow theory model with dissipations

A linear diffraction potential flow theory model was developed based on a fairly per-
fect fluid [10] to introduce the dissipation into the moonpool with the assumption of
incompressible and inviscid fluid and irrotational flow (u = ∇ϕ). As presented in Guével
(1992) [10] and Chen (2011) [9], the fairly perfect fluid can be derived by incorporating
the dissipative force, f = −εu, in the momentum equation which enables the treatment of
the over-prediction of the free surface trapped in the moonpool. Therefore, the modified
Bernoulli equation can be written with the velocity potential [9] :

p = −ρ

(
∂ϕ

∂t
+

1

2
∇ϕ · ∇ϕ+ gz + εϕ

)
(4)

where ϕ is the velocity potential and ε is the dissipation parameters.

IV – 1 The boundary value problems

Figure 3 describes the two-dimensional problems of a box with a moonpool and skirts,
where SF is the free surface, SGF is the free surface in the gap, SB is the body surface,
Sb is the sea bed and S∞ is a lateral boundary.

Dissipation domains

Z

X

Figure 3 – Description of the 2D problem of a box with a moonpool and skirts.

The linearization of the boundary condition is considered by assuming a small wave
amplitude. With the time-harmonic assumption with the circular frequency ω, the velocity
potential can be expressed as ϕ (X,Z, t) = R

{
φ (X,Z) e−iωt

}
.

Therefore, the boundary value problem of the spatial function φ is :

∇2φ = 0 in Ω (5)

∂φ

∂z
=

ω2

g
(1 + if)φ on z = 0 (6)

∂φ

∂n
= 0 on SB (7)

∂φ

∂z
= 0 on z = −h (8)
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where f is a dissipation factor (f = ε/ω), and Equation 6 represents a combined free
surface boundary condition, which is equivalent to the classical one when f = 0.

The fluid domain is divided into seven subdomains as presented in Figure 3, considering
the moonpool and skirt. Specifically, region III is designated as a dissipation domain
to address the non-physically violent free surface responses within the moonpool. It is
important to note that the dissipation caused by the skirt is not included in this study.

General solutions of velocity potentials are developed with a series of eigenfunctions
on the decomposed fluid domains. The solutions for each domain are summarized in Table
3, along with their corresponding dispersion relations. In particular, in region III, complex
eigenvalues arise in the dispersion relation due to the dissipation factor. These complex
eigenvalues are obtained using a perturbation method [16].

The general solutions are matched on the interface of subdomains based on the hy-
pothesis of normal velocity and pressure continuity [17], known as matched eigenfunction
expansion methods (MEEM). The unknown coefficients in the general solutions denoted
A and B, can be determined by solving a linear system after truncating the infinite series
to finite, N . In this study, N is set to 20.

Table 3 – General solutions of decomposed domains in the two-dimensional problem.

Potential General solutions Eigenvalues

φI = φI + φp − igA
ω
f0(z)e

ik0x + A10 cosh k0(z + h)e−ik0x +
∑∞

n=1 A1n cos kn(z + h)eknx ω2/g = k0 tanh k0h = −kn tan knh
φII A20x+B20 +

∑∞
n=1 (A2ne

αnx +B3ne
−αnx) cosαn(z + h) αn = nπ/(h− d1)

φIII (A30e
−iγ0x +B30e

iγ0x) cosh γ0(z + h) +
∑∞

n=1 (A3ne
γnx +B3ne

−γnx) cos γn(z + h) (1 + if)ω2/g = γ0 tanh γnh = −γn tan γnh
φIV A40x+B40 +

∑∞
n=1 (A4ne

αnx +B4ne
−αnx) cosαn(z + h) αn = nπ/(h− d1)

φV A50 cosh k0(z + h)eik0x +
∑∞

n=1 A5n cos kn(z + h)eknx ω2/g = k0 tanh k0h = −kn tan knh
φV I

(
A60e

−iβ0x +B60e
iβ0x

)
cosh β0(z + d2) +

∑∞
n=1

(
A6ne

βnx +B6ne
−βnx

)
cos βn(z + d2) ω2/g = β0 tanh β0d2 = −βn tan βnd2

φV II
(
A70e

−iβ0x +B70e
iβ0x

)
cosh β0(z + d2) +

∑∞
n=1

(
A7ne

βnx +B7ne
−βnx

)
cos βn(z + d2) ω2/g = β0 tanh β0d2 = −βn tan βnd2

∗ φI is the incident wave potential where f0(z) = cosh k0(z + h)/ cosh k0h and φp is the perturbed wave potential.

IV – 2 Modified horizontal mean drift forces using far-field method

As described in Maruo and Newman [18, 19], the horizontal forces can be derived
using the conservation of momentum equation after time averaging, known as the far-
field method. However, because of the presence of the dissipation domain, we have an
additional term that appears in the equation for horizontal drift forces :

F x = −
∫∫

S∞

(pnx + uxun) dS − ρ

∫∫
Sd

εϕnxdS (9)

where Sd is the dissipative surface in the moonpool region.
By substituting the velocity potentials of domains I, II, and V, we can get the following

expression for the horizontal forces :

F x =
1

2
ρg

Cg

Cp

(
A2 + ARA

∗
R − ATA

∗
T

)
+

ρωf

2
X (10)

whereAR = iω
g
A10 cosh k0h,AT = iω

g
A50 cosh k0h, and X = φIIIη∗

∣∣∣
x=−bd/2,z=0

−φIIIη∗
∣∣∣
x=bd/2,z=0

.

The superscript ∗ is for the complex conjugate.
In Equation 10, Maruos’s formula, A2 = ARA

∗
R + ATA

∗
T [18], is not valid, as the

modeling of the fairly perfect fluid in the moonpool leads to artificial energy dissipation.
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IV – 3 Determination of the dissipation factor

To determine the dissipation factor, f , we analyzed the free surface located in the
middle of the moonpool, calculated through CFD and MEEM models, for both configura-
tions, with and without skirts. The linear free surface elevation in the dissipation region
is calculated using the following equation :

η =
ω

g
(i− f)φIII on z = 0 (11)

Figure 4 shows the response amplitude operator (RAO) of the free surface elevation at
the center of the moonpool. According to the potential flow theory model, the free surface
RAO shows the largest peak at around 1.3 seconds, which aligns with the resonance of
the piston mode presented by Molin (2001) [4].

The theoretical model demonstrates good agreement with the CFD results when incor-
porating the dissipation factor of f = 0.1. Additionally, the sharp peak observed around
0.53 seconds, which is close to the frequency of the second sloshing mode, is also dampe-
ned. Therefore, in the following results, we will keep the dissipation factor, f = 0.1, for
the computation of the theoretical model.

0 0.5 1 1.5 2 2.5

T [s]

0

0.5

1

1.5

2

2.5

2
(1

) =
A

[-
]

CFD-box
CFD-box with skirt
MEEM-box (f = 0:0)
MEEM-box (f = 0:1)
MEEM-box with skirt (f = 0:0)
MEEM-box with skirt (f = 0:1)

Figure 4 – RAO of free surface elevation in the moonpool.

V – Data analysis

The time series (from model tests and CFD simulations) were filtered out by a low-pass
filter using a cut-off frequency of 5.0 Hz. This does not really modify the CFD data but it
removes the noise from the load cell. A time window is selected for each signal beginning
after the transient period with an integer number of wave periods, N , chosen to minimize
the wave reflection from the wave-absorbing beach. The Fourier analysis was then used
to extract the harmonic content from the time history within the selected window (NT ).

This selection process can be quite challenging since the steady-state window becomes
notably short for the experiments with large wave periods. In contrast, it is somewhat
easier with the CFD, because of the better wave absorption, though the evaluation of the
drift forces remains sensitive to the selected time window.

Moreover, the mean drift forces are relatively low compared to the sensor measurement
range, and the direct measurement by averaging the force over the time window carries
significant uncertainties. To address this, we used a multi-sensor approach to analyze the
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waves, enabling us to determine the amplitudes of reflected and transmitted waves by mi-
nimizing the quadratic error, as described in Courbois (2018) [12]. These amplitudes were
then utilized to evaluate the horizontal mean drift forces based on the two-dimensional
far-field method [18, 19, 20],

Fd =
1

2
ρg

Cg

Cp

(
A2 + ARA

∗
R − ATA

∗
T

)
(12)

where Cg =
ω
2k0

(
1 + 2k0h

sinh 2k0h

)
and Cp =

ω
k0

are the group and phase velocities. A, AR and

AT denote the incident, reflected and transmitted wave amplitudes. The formula given in
Equation 12 is the same as the one given for the potential flow model in Equation 10,
without the dissipation term (f = 0).

VI – Results

VI – 1 Validation of the CFD simulations

A snapshot of the CFD simulation is compared with a picture of the experimental test
in Figure 5 for the case with H/λ = 0.03 and T = 1.55 s. In the camera, the free surface
is visualized by the contrast of light from the floor, while the black solid line represents
the free surface in the numerical simulations. The free surface elevation computed with
the CFD is similar to the one pictured.

Figure 5 – Comparison of free-surface deformations in regular waves with H/λ = 0.03
and T = 1.55 s : experimental (left) and numerical (right) results.

Figure 6 – Comparison of wave excitation forces time series in regular waves with H/λ =
0.03 and T = 1.55 s : experimental (solid) and numerical (dashed) results.
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The comparison between experimental and CFD wave excitation load time histories is
presented in Figure 6 for the same wave condition. Both cases, with and without the skirt,
are presented, demonstrating strong agreement between the experimental data and the
CFD results. Additionally, there is consistent repeatability over time in the forces time
series.

VI – 2 The first harmonic operators

The first harmonic force components measured from the load cell are compared with
those obtained from the CFD and the first-order results from the theoretical model
(MEEM) as shown in Figures 7 and 8. In the measurements, the horizontal forces show a
weak dependence on wave steepness, both with and without skirts. In contrast, the verti-
cal forces exhibit significant variation relative to the steepness in long wave periods. The
presence of skirts slightly increases the horizontal forces but diminishes the first peak in
vertical forces compared to the model without skirts and shifts this peak to shorter wave
periods. Additionally, the vertical forces on the model with skirts increase with wave steep-
ness around a period of T = 1 s, where theoretical model gives a minimum value. Around
this period for the case with skirts, at the lowest wave steepness, the vertical forces are
nearly zero, which aligns with the theoretical model. However, as the steepness increases,
the discrepancy from the theoretical predictions becomes apparent. Generally, the CFD
and theoretical models with the dissipation well predict the experimental measurements.
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Figure 7 – 1st harmonic operator of F
(1)
x : model without (left) and with skirts (right).
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VI – 3 The horizontal mean drift forces

The horizontal drift forces are presented for each wave excitation period in Figure
9. Two series of results are presented for the experimental measurement and the CFD
computations : the direct measurement obtained by averaging the horizontal loads (LC for
load cell or NF for near-field method) and the far-field (FF) estimation. The comparison
focuses on a single steepness of H/λ = 0.03, as the force values for lower wave steepness
result in smaller values that are more challenging to measure.

Generally, the drift forces estimated by the far-field method with CFD and experimen-
tal data are very similar. They are also mostly comparable with the MEEM value with the
dissipation (f = 0.1). However, direct measurement or CFD integration results are larger
from the far-field estimation in the long-wave period region. This is particularly true for
the case with the skirt, as it may lead to large energy dissipation and consequently pos-
sible errors in the far-field estimation. The CFD values obtained for cases T=1.1 s and T=
1.3 s are much larger than the load cell measurements. Uncertainties in the measurements
of both the incoming waves and the loads may contribute to this discrepancy, as well as
possibly some inaccuracies in the CFD simulations for these conditions characterized by
large vortices in the flow.
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Figure 9 – Comparison of the direct measurements (NF or LC) and the far-field (FF)
method for horizontal mean drift forces in regular waves with wave steepness H/λ = 0.03 :
model without (left) and with skirts (right).

A further comparison is given in Figure 10 for the far-field method with various wave
steepnesses. The drift forces differ depending on the presence of skirts and vary with wave
steepness, except for the skirtless model in the short wave period region. Overall, the
mean drift forces are slightly larger for the model with skirts compared to the skirtless
model in the long-wave period region and slightly smaller in the short-wave period region.

The potential flow theory model tends to underestimate the drift forces, especially
in the long wave period region (T > 1.3 s), when it does not account for dissipation
(f = 0). However, the predictions from the theoretical model improve significantly when
considering dissipation within the moonpool, particularly for the wave steepness of H/λ =
0.03, where the dissipation factor was determined. Despite these improvements, some
inconsistencies remain in the short-wave period. Furthermore, the authors found that the
additional term in Equation 10 has a minimal effect on the horizontal mean drift forces.

10



0 0.5 1 1.5 2 2.5

T [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

F
x
=;

g
L
A

2
[-
]

EXP (H=6 = 0:01)
EXP (H=6 = 0:02)
EXP (H=6 = 0:03)
CFD (H=6 = 0:03)
MEEM (f = 0:0)
MEEM (f = 0:1)

0 0.5 1 1.5 2 2.5

T [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

F
x
=;

g
L
A

2
[-
]

Figure 10 – Horizontal mean drift forces using the far-field method in regular waves
with various wave steepness : model without (left) and with skirts (right).

VII – Conclusion

We have investigated wave excitation loads on fixed box-like pontoons with a moon-
pool, equipped with and without skirts. The experiment was carried out in the two-
dimensional wave flume of Ecole Centrale Marseille, using regular waves of varying steep-
ness to examine nonlinearity. Dedicated numerical simulations were performed correspon-
ding to the experimental setup to compute the wave excitation forces and free surface
elevation around the model as well as the moonpool. The theoretical model was develo-
ped for this specific geometry based on the fairly perfect fluid assumption utilizing the
two-dimensional matched eigenfunction expansion method.

The study found that the presence of skirts distinctly influences wave excitation forces,
both in experiments and numerical simulations. By incorporating dissipation into the
moonpool, the potential flow theory model successfully captures the first harmonic wave
forces as well as the mean drift forces using the far-field method. In future studies, we
plan to broaden our findings to include a freely floating body to investigate how the skirts
affect motion responses.
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