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ABSTRACT

This study aims at testing the efficiency of a Level-Set solver coded within the OpenFOAM frame-
work (Weller et al. [1998]) to perform ship seakeeping simulations. This solver, named LSFoam
(Paulin Ferro [2024]), is based on an improved Level-Set method (Sussman et al. [1998]), has a
consistent pressure-velocity coupling (Cubero and Fueyo [2007]) and benefits from the Ghost Fluid
Method (Fedkiw et al. [1999]). The solver’s performances (accuracy and speed) are tested for two
test cases: the oscillation of a floating cylinder based on ITO [1971] experiment and the seakeeping
experiments of the KCS hull from case 2.10 of the Workshop [2015] (Visonneau et al. [2020]).
Simulations are also performed with the standard Volume of Fluid (VoF, Hirt and Nichols [1981])
solver of OpenFOAM: interFoam.
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I – Introduction

Simulations of ship added resistance in waves have become popular due to the need to reduce fossil fuel emissions.
During the design stage, simulations can ease the hull shape optimization so that the added resistance effect can be
reduced and seakeeping can be improved. Although CFD approaches lead to higher computational costs, compared
to potential flow methods, they have gained in popularity due to the increase in computing resources. Open-source
codes such as OpenFOAM offer an efficient CFD licence-free framework. The ability of RANS-based CFD methods
to produce accurate results for marine applications has been demonstrated at the Workshop [2015] (Visonneau et al.
[2020]). The experimental data of the KCS seakeeping, in 5 different sea states, enables researchers to compare their
numerical methods and thus, to assist in the development of efficient numerical strategies. Seonguk Seoa [2017] have
investigated the results of the OpenFOAM solver interDyMFoam coupled with the library waves2Foam Jacobsen. They
identified some discrepancies for the short wave cases and good agreement with experimental data for the longer
ones. Filip et al. [2017] have also calculated the same test cases using OpenFOAM and the waves2Foam toolbox
Jacobsen et al. [2012]. Correct results are obtained with mean resistance coefficient relative errors below 10%. Lee
et al. [2019] have shown that the commercial CFD tool StarCCM+ can also perform the same case with relative errors
lower than 10% for the added resistance and below 5% regarding the average trim and sinkage motion responses. Still,
for the KCS seakeeping simulations, Vuko and Hrvoje [2015] have performed sensitivity studies using a SWENSE
solver Ferrant [2002] that benefits from the Ghost Fluid Method (GFM) Fedkiw et al. [1999] and a level set transport
equation derived from phase field equation Sun and Beckermann [2007]. Good agreement was calculated for the case
2.10 and the discrepancy for the oblique wave cases is believed to be caused by experimental issues. Kim and Jun
[2021] has presented two VoF-OpenFOAM based solvers texted "foamStar" and "foamStarSWENSE". Seakeeping
simulations have been performed on the Wigley III hull for 3 Froude numbers and 6 wavelengths. The 2.10 KCS wave
cases have also been modelled. Using the Euler scheme, "foamStarSWENSE" proved to produce more accurate results
and better ship motions even though both solvers provide good agreement with experimental data. Some instabilities
related to the use of high order Diagonal Implicit Runge-Kutta (DIRK) temporal schemes have been reported. The
performances of the classical Level-Set method Sussman et al. [1998] in a CFD finite volume approach to perform
such complex simulations have not yet been clearly assessed. Regarding the classical Volume of Fluid method Hirt and
Nichols [1981], the level set method is known to have mass conservation issues Sussman et al. [1994]. The proposed
method in the LSFoam solver Paulin Ferro [2024] has shown excellent performance for complex meshes. The use of
the GFM, also implemented in LSFoam, has proven to improve wave propagation simulations Ferro et al. [2022] by
avoiding light phase accelerations. This study aims to test the efficiency and accuracy of the OpenFOAM based solver
LSFoam for two test cases. LSFoam is first tested for modelling the falling and the oscillation of a floating cylinder. The
results are compared with the experimental data of ITO [1971] for three mesh resolutions. The second test case is the
modelling of the KCS seakeeping experiment from Workshop [2015], Visonneau et al. [2020]. Regular wave fields
are generated with a relaxation zone and ship resistance, sinkage and trim signal harmonic amplitudes are calculated
with Fast Fourier Transformations. In this work, the solver numerical procedure is first briefly explained (the reader is
referred to Paulin Ferro [2024] for the complete procedure). Then, the floating cylinder test case is presented and finally
the KCS seakeeping simulation results are discussed.

II – Mathematical and numerical procedure

II – 1 The Level-Set equation

The interface position is calculated using a Level-Set approach. The Level-Set function ψ(x) is defined by the shortest
distance d from a point x to the interface. It is signed depending on the point domain (1), so that numerical stability
near the interface is improved by avoiding ∇ψ discontinuities.

ψ(x) =


0 x ∈ Γ

d(x) x ∈ Ω+

−d(x) x ∈ Ω−
(1)

Where the computational domain is divided into two parts: Ω+ is representing the heavy phase domain, Ω− the light
one and they are separated by the interface Γ. The interface normal n and curvature κ are respectively computed
knowing ψ:

n =
∇ψ

|∇ψ|
(2)
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κ = ∇ · n (3)

The transport of the Level-Set function in a flow field (assumed incompressible in this work) will breach the distance
property and will cause mass variations. A reinitialization procedure is often adopted after the transport by solving the
following (eikonal) equation (Sussman et al. [1994]) to recover the distance property:

∂ψ

∂τ
= S (ψ0) (1− |∇ψ|) (4)

Where S is the sign function, ψ0 the initial value of the level set function before the reinitialization process, and τ has
the dimension of a length. The function S is smoothed to improve the numerical resolution near the interface using the
expression of Osher and Fedkiw [2003]: S (ψ0) =

ψ0√
ψ2

0+|∇ψ0|ϵ(x)2
where ϵ(x) is the filtering length defined below.

Sussman et al. [1998] defined w = S (ψ0)n, which leads to the following form of the reinitialization equation:

∂ψ

∂τ
+∇ · (wψ)− ψ∇ ·w = S (ψ0) (5)

Equation 5 is more suitable for implicit finite volume discretization Vukcevic and Jasak [2014], facilitating the use
of unstructured meshes and improving the numerical stability. However, in practice, interface displacements can still
occur during the reinitialization procedure, leading to unacceptable mass variations. Having a reinitialization frequency
and/or iteration number that is too high can result in significant interface displacements. Thus, determining the optimal
iteration number and frequency for a given test case is the major drawback of this method. To address these issues,
equation 5 is solved using the method defined in Paulin Ferro [2024]:

• A Local Time Stepping approach (LTS) is employed where the spatial time step τ is adjusted locally based on
a given maximal reinitialization Courant number, γmax:

1

τ (x)
= max

 1

∆z (x)
,

∑
f

wf · Sf

γmaxV (x)

 (6)

Where wf is obtained by linear interpolation of w from cell center to face center. The spatial time step τ(x)
is maximised for each cell based on γmax but can’t exceed the local cell size ∆z (x).

• Anchoring cells are defined to avoid any interface displacements during the resolution of the reinitialization.
The set of cells (called anchoring cells) that cross the zero Level-Set contour are detected (they share a face
that satisfies ψOψN < 0). The corresponding Level-Set values are stored before the reinitialization procedure.
Then, after each iteration of the reinitialization process, Level-Set values of the anchoring cells are restored so
that the zero Level-Set contour remains undisturbed.

• The filtering length ϵ(x) is non-uniform and depends on the local cell size. ϵ(x) = kle with k a user defined
constant (usually k = 2) and le(x) the length of the cell edge that have the highest scalar product with the
interface normal vector.

The Level-Set function is used to calculate the volume fraction α by applying the standard hyperbolic filtering function:

α =
1

2

(
tanh

(
πψ

ϵ(x)

)
+ 1

)
(7)

The phase fraction α is then used to calculate the mixture viscosity µ and the densities as:

µ = αµ+ + (1− α)µ− (8){
ρ = ρ+ if ψ > 0

ρ = ρ− if ψ < 0
(9)

Where µ+and µ− are the dynamic viscosity of heavy and light phases and ρ+ and ρ− their density.
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II – 2 Consistent pressure-velocity coupling

The non-conservative momentum equation form is adopted:

∂u

∂t
+∇ · (u⊗ u) =

1

ρ

(
∇pd +∇ ·

[
µeff (∇u+ (∇u)T )− µeff

2

3
tr(∇u)T

])
, in Ω+ or Ω− (10)

Where u is the velocity field, µeff the effective viscosity (sum of the molecular viscosity µ and turbulence viscosity
µturb) and pd the piezometric pressure pd = p− ρg · x, Rusche [2002]. Having a continuous velocity and dynamic
viscosity fields, equation 10 is completed by the following set of jump conditions at the interface Γ:

[
∇pd
ρ

]
Γ

= 0 (11)

[pd]Γ = σκ+ [ρ]Γ g · xΓ = H (12)

Where xΓ is the interface coordinate vector and σ the surface tension coefficient. The bracket notation [.]Γ indicates a
jump value between both sides of the interface. The momentum equation 10 is discretized without the pressure gradient
term. The remaining terms are treated implicitly excepting 1

ρ∇·
[
µeff (∇u)T − µeff

2
3 tr(∇u)T

]
. The semi-discretized

momentum equation takes the following form for cell P surrounded by neighbour N :

aPuP = −∇pd
ρ

−
∑
f

aNuN + s(u) = −∇pd
ρ

+H(uP ) (13)

Where aP and aN are respectively the diagonal and off-diagonal coefficients. To avoid checkerboard oscillations on
collocated grids, the so-called Rhie and Chow [1983] interpolation is used to obtain the face velocity by mimicking
Equation 13. In this work, to avoid relaxation and time step dependencies the interpolation of each term is performed in
a consistent manner following Cubero and Fueyo [2007]. The coefficient aP is decomposed into its temporal at and
spatial as parts. The old time contribution is taken out from H(u) (first order Euler scheme here as an example) and
relaxation is applied to Equation 13, resulting in:

uP =
1

1 + d

(
−αu
as

∇pd
ρ

+
αu
as

H(uP ) + αudu
0
P

)
+ (1− αu)u

k−1
P (14)

Where d = at
as

, αu is the relaxation factor, uk−1
P the velocity field of the previous non linear iteration (PIMPLE loop),

and u0
P the previous time step velocity field. The face velocity equation is then obtained by mimicking Equation 14 at

faces (written in term of flux ϕ [m3/s]).

ϕf =
1

1 + [d]f

(
−
[
αu
as

]
f

(
∇pd
ρ

)
f

+

[
αuH(up)

as

]
f

· Sf + αu[d]fϕ
0
f

)
+ (1− αu)ϕ

k−1
f (15)

Where [.]f is the operator that linearly interpolates from the cell center to the face center. The continuity equation is
then applied to Equation 15 to obtain the pressure Poisson equation in its finite volume discretized form:

∑
f

[
αu

as

]
f

1 + [d]f

(
∇pd
ρ

)
f

· Sf =
∑
f

1

1 + [d]f

([
αuH(up)

as

]
f

· Sf + αu[d]fϕ
0
f

)
+
∑
f

(1− αu)ϕ
k−1
f (16)

The mesh non-orthogonality is handled using the over-relaxed approach, Jasak [1996]. The surface vector Sf is
decomposed in two parts: the orthogonal δ discretized implicitly, and the non-orthogonal k treated explicitly. After
solving the pressure Poisson equation, the velocity field and conservative face flux ϕ are respectively updated using
Equations 14 and 15 with the updated pressure field. The jump conditions 11 and 12 are employed to derive interface
corrected interpolation schemes in the manner of Vukcevic [2016a], where the procedure is given in details.
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II – 3 Solver chart of LSFoam

The Level-Set, momentum, and pressure Poisson equations are solved in a segregated manner with the PIMPLE
algorithm available in OpenFOAM. The PIMPLE algorithm is a combination of SIMPLE (Patankar and Spalding
[1972]) and PISO (Patankar and Spalding [1972], Issa [1986]) algorithms. The steps are described below 1.

1 w h i l e t < tend do :
2 do PIMPLE loop :
3 Call dynamic mesh motion
4 Update grid and flux
5 Solve the Level-Set transport equation
6

7 i f last PIMPLE loop:
8 Solve the eikonal reinitialization Level-Set equation 5
9

10 Apply relaxation zone on ψ and u
11 Update ρ and µ
12 Update GFM jump conditions
13 Build velocity equation 13
14

15 do PISO :
16 Solve Pressure Poisson equation 16
17 Update flux and velocity
18

19 Solve turbulence equations
Listing 1: Segregated LSFoam flow algorithm
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III – The falling of a floating cylinder, ITO [1971]

The falling of a solid floating cylinder in water has been simulated following the experiment of ITO [1971]. This test
case has also been performed by Filip et al. [2017], Wang and Al. [2019], Chen et al. [2019] and Joshi et al. [2018]. A
cylinder with a diameter of d = 0.1524 m is placed at y0 = d/6 above the free surface without initial velocity. The
cylinder has a density of 500 kg/m3. The 2D numerical domain is illustrated in Figure 1. Its length is 50d and the water
depth equals 7.9d. The waves generated by the falling cylinder are damped close to the side patches with relaxation
zones so that any potential reflections are avoided. The bottom patch is a wall. The top patch is an atmospheric boundary
condition. A mesh sensitivity study has been performed with three meshes composed of 37k, 54k and 138k cells. The
three grids have been generated by snappyHexMesh and are illustrated in Figure 2. The simulations are performed
with an adaptable time step based on a maximum CFL condition of 0.3. The temporal terms are resolved using the
backward scheme. Six outerCorrectors (SIMPLE) and six correctors (PISO) are used. Convective terms are discretized
with the linearUpwind scheme, and the corresponding gradients are calculated using the Gauss linear scheme, except
for the pressure one, which is calculated using the leastSquares method (corrected through GFM). The history of the
cylinder’s center of mass position is compared with the experimental data from ITO [1971] in Figure 3. Excellent
agreement is found for the finest grid, whereas having a coarser mesh tends to dampen the oscillations. Results for the
finest grid are also compared with those from interFoam. The numerical settings are the same except for the temporal
scheme, calculated with the CrankNicolson 0.5, as the backward is not available with interFoam. The results from both
solvers are really close to the experimental data, but the main difference between the two solvers for this test case is the
calculation time, summarized in table 1. The LSFoam simulations for the medium and fine grids lasted 1h34 and 8 hours
on 4 cores, while for interFoam, with the same number of cores, they lasted 1h50 and 11 hours. Having a finer mesh
tends to increase the calculation time difference as it also tends to create more spurious air velocities with interFoam.

Figure 1: Illustration of the ITO [1971] test case

LSFoam Coarse LSFoam Medium LSFoam Fine interFoam Coarse interFoam Medium interFoam Fine
0h36 1h34 8h 0h45 1h50 11h18

Table 1: Calculation times for LSFoam and interFoam on 4 cores
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Figure 2: coarse, medium and fine grids

Figure 3: LSFoam results for the three meshes

Figure 4: Results comparison between interFoam and LSFoam for the finest grid
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IV – Workshop [2015] (Visonneau et al. [2020]) case 2.10, KCS seakeeping simulations

Figure 5: KCS geometry

This test case consists in modelling the KRISO Container Ship (KCS) behaviour in different regular head wave
configurations. The KCS is designed by the Korean Research Institute of Ship and Ocean Engineering (KRISO)
and is illustrated in Figure 5. Both the experiments and the simulations are performed with a scaled ship (LPP =
6,07 m) including a rudder. Its main particular is summarized in table 2. The five configurations from the case
2.10 of the 2015 Workshop [2015] (Visonneau et al. [2020]) have been simulated, Table 4. The 2.07 m/s ship’s
velocity is the same for all the test cases and corresponds to a Froude number of 0.261. The higher the configuration
number, the longer the wave length. Case C0 corresponds to calm water and case C3 to the resonance domain. The
numerical towing tank is illustrated in Figure 6 and is composed of two relaxation zones for wave management: one
for generation at the inlet and one for damping at the outlet. Simulations are carried out in the fixed ship reference
frame using stream function wave theory, Fenton [1990]. A symmetry condition is applied on the y = 0 plane.
Turbulence effects are simulated with the k − ω SST model, Menter et al. [2003]. The air/water flow is imposed at
the entrance of the computational domain within the inlet relaxation zone. A pressure reference is imposed at the
top via an atmospheric boundary condition. For the bottom and lateral patches, a slip condition is used, while at the
outlet, a zero-gradient condition is applied. Wall functions are used for the hull patch. The grids are generated with
snappyHexMesh, and the near-hull region meshes are illustrated in Figure 7. In this region, cells are refined in each
direction within a rectangular box. Close to the free surface, the cells are refined between -1 m and +1 m in all directions.

Calm Water case C0:

A mesh sensitivity study was conducted on the calm water case (C0). Three meshes were generated. The coarse mesh
contains 0.86 M cells, the medium mesh 1.9 M cells, and the fine one 3.7 M cells. Simulations were performed using
both LSFoam and interFoam with a fixed time step of 25 ms over a period of 50 s. The results of this sensitivity study
are presented in table 3. The drag coefficient CT is calculated from the force history:

CT =
Fx

0.5ρU2Sw

The trim (in degree) and sinkage (divided by Lpp) are also calculated. Both medium and fine mesh results have
excellent agreement with the experimental data for both solvers, with relative errors lower than 5%. The calculation
durations are longer with interFoam. The medium mesh provides a good balance between computational cost and
accuracy. Based on this study, the medium mesh will be used for the wave cases. The numbers of cells per wave height,
per wave length, and the number of time step per period are listed in table 5.

Head wave cases C1/2/3/4/5:

Simulations are performed with a fixed time step of 10 ms, and the temporal terms are discretized using the first-order
implicit Euler scheme. Six outerCorrectors (SIMPLE) and five correctors (PISO) are used. Fast Fourier Transformations
(FFT) are calculated on the resistance, trim and sinkage signals. The five sea states are illustrated in Figure 8. Mean
values and the first peak amplitudes are calculated for both interFoam and LSFoam, and they are compared with
the experimental data reported in Visonneau et al. [2020]. The trim values (in degree) are divided by the wave
steepness Ak = kHs/2n, and the sinkage values are divided by A = Hs/2. Regarding resistance, the mean and
first harmonic amplitudes are plotted in Figure 9. The mean values calculated by LSFoam (shown in table 6) are
close to the experimental data, with relative errors lower than 5%, except for the C3 test case that correspond to the
resonance domain with a relative error of 9%. For the first harmonic, the calculated amplitudes are underestimated
for both interFoam and LSFoam. The same trend is also observed in Vukcevic [2016b] and Filip et al. [2017]. For the
dimensionless trim (Figure 10 and table 7), the overall trend is captured with reasonable agreement for both mean and
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first harmonic values. The mean values show medium agreement with experimental data, excepting for the cases C3

(resonating) and C4, where the errors are significant. For interFoam, the last case also exhibits an important relative error
(> 50 %). The first harmonic amplitudes are underestimated for both solvers, with mainly larger errors for interFoam.
Finally, regarding the dimensionless sinkage (Figure 11 and table 8), the trends are in overall good agreement with
experimental data for both medium and first harmonic values. interFoam performs slightly better for the mean values,
with a maximum relative error of -21 % for the fourth case. The first harmonic amplitudes are underestimated for the
first three cases, but a good agreement is found for the last two cases with LSFoam, showing relative errors of ≈ 3 %
and ≈ 0.5 %.

Figure 6: The computational domain

Full scale Model
Length between perpendiculars LPP (m) 230.0 6.07

Length of waterline LWL(m) 232.5 6.13
Draft T (m) 10.8 0.285

Displacement volume ∆(m3) 52030 0.9571
Wetted surface area with rudder S(m2) 9539 6.6978
Moment of inertia Kyy/Lpp, Kzz/Lpp, 0.250 0.252

Table 2: KCS main particular
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Figure 7: The three grids used for the sensitivity study. From top to bottom: coarse, medium and fine

CT z/Lpp10
−3 θ(◦) ErrCt(%) Errz(%) Errθ(%) CPU time

LSFoam
Coarse 4.017 -2.022 -0.1670 4.7 -2.3 1.4 3h23

Medium 3.871 -2.014 -0.1707 0.94 -2.7 3.7 7h02
Fine 3.864 -2.025 -0.1674 0.75 -2.2 1.7 12h18

interFoam
Coarse 4.068 -2.063 -0.166 6.1 -0.3 0.7 4h43

Medium 3.936 -2.030 -0.163 2.6 -1.9 -1.1 8h40
Fine 3.800 -2.047 -0.165 -0.9 -1.06 0.23 14h19

Experimental data 3.835 -2.074 -0.1646
Table 3: C0 sensitivity study results

C0 C1 C2 C3 C4 C5

speed (m/s) 2.07
Froude number (Fr) 0.261

Reynolds Number (Rey) 1.074×107
Wave length (λ/Lpp) Na 0.65 0.85 1.15 1.37 1.95
Wave height: Hs (m) Na 0.062 0.078 0.123 0.149 0.196
Wave steepness Ak Na 0.049 0.047 0.055 0.056 0.052

Table 4: Case wave conditions
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C1 C2 C3 C4 C5

number of cells per wave height 3.8 4.9 7.7 9.3 12.2
number of cells per wave length 9.15 12.0 16.2 19.3 27.5

number of time step per wave period 88 106 131 148 187
Table 5: Incident wave time and space discretization for medium grid

Case LSFoam interFoam
Mean, ErrCT

h1, ErrCT
Mean, ErrCT

h1, ErrCT

C1 0.6 -60.9 9.0 -56.9
C2 -4.3 -27.6 1.6 -32.2
C3 -9.1 -4.8 -9.5 -12.7
C4 -0.9 -28.9 1.1 -40.7
C5 0.46 -8.7 4.9 -15.0

Table 6: Resistance coefficient mean value and first harmonic amplitude relative errors for both solver

Case LSFoam interFoam
Mean, Errθ/Ak h1, Errθ/Ak Mean, Errθ/Ak h1, Errθ/Ak

C1 4.4 -48.8 11.1 -47.5
C2 13.6 6.0 3.0 -9.7
C3 3800 -22.0 4500 -30.6
C4 68.5 -21.7 137.8 -28.4
C5 12.3 -6.2 50.4 -13.5

Table 7: Dimensionless trim mean value and first harmonic amplitude relative errors for both solver

Case LSFoam interFoam
Mean, Errz/A h1, Errz/A Mean, Errz/A h1, Errz/A

C1 -12.3 -63.0 -9.9 -57.5
C2 -14.1 -33.8 -8.4 -49.4
C3 -4.6 -14.6 7.3 -28.5
C4 -33.1 -2.7 -21.4 -3.3
C5 -39.7 -0.6 -14.3 -7.4

Table 8: Dimensionless sinkage mean value and first harmonic amplitude relative errors for both solver
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Figure 8: View of the sea states

Figure 9: Resistance coefficient values for all wave conditions
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Figure 10: Dimensionless trim values for all wave conditions

Figure 11: Dimensionless sinkage values for all wave conditions
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V – Conclusions

Seakeeping and added resistance simulations are valuable during a hull design stage. However, they remain challenging
to model with CFD approaches compared to the classical, but less accurate, potential flow methods. The CFD solver,
proposed by Paulin Ferro [2024], employs a coupled Level-Set method / Ghost Fluid Method (GFM), with a time
consistent pressure-velocity coupling as described by Cubero and Fueyo [2007] and an enhanced reinitialization
procedure. First, the falling of a floating cylinder is simulated following the experiment by ITO [1971]. Both interFoam
and LSFoam showed good agreement with the experimental data. However, LSFoam is computationally less expensive.
Then, the test case 2.10 from 2015 Tokyo workshop (Workshop [2015], Visonneau et al. [2020]) is reproduced. A
mesh sensitivity study is conducted on the calm water resistance case (C0) to achieve an optimal balance between
computational cost and accuracy. Simulations are then performed for both interFoam and LSFoam. Overall good
agreements with experimental data are observed for the resistance mean values. The relative errors are below 10 %.
For trim and sinkage motions, average values range from good to poor agreement (especially for the resonating case).
The first harmonic amplitudes are calculated using Fast Fourier Transformations (FFT). The resistance coefficient first
harmonic amplitudes are underestimated for both solvers, with a maximum relative error of 60% for case C1 (both
solver). Regarding the motions, the first harmonic amplitudes range from excellent to poor agreement depending on
the case. LSFoam and interFoam provide results with important errors that are likely due to insufficient mesh and/or
time step resolution. It has to be noticed that the KCS inertia moment Iyy could play an important role in the motion
responses and its influence has not been assessed.
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