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Résumé

La propulsion cycloidale promet une utilisation intéressante sur les navires du futur.
Ses capacités d’opération à basse vitesse d’avance, cas du propulseur Voith-Schneider,
et à haute vitesse d’avance avec une cinématique des pales différente (cas du propulseur
Lipp ou ADVPropulse) en font un système de propulsion polyvalent et efficient pour une
grande plage de fonctionnement. En outre, sa capacité à orienter la poussée sur 360◦ de
façon quasi-instantannée fait de cette technologie un choix de propulseur prometteur pour
contrôler la dérive des navires à assistance vélique.

Dans ce papier, les auteurs utilisent une plateforme expérimentale simulant le fonc-
tionnement des propulseurs cycloidaux et qui permet en outre de recourir à l’optimisation
des lois de calage grâce à une architecture électrique de commande des pales. Une
paramétrisation adéquate des lois de calage apporte des gains conséquents sur les perfor-
mances globales du propulseurs en fonction du ou des objectifs fixés durant l’optimisation.
Les travaux récents ont montré un gain de 10 à 20% sur la poussée et le rendement grâce à
la dissymétrie des lois optimisées en comparaison avec des lois sinusoidales classiquement
utilisées sur les propulseurs à architecture de commande de pale mécanique.

L’étude présentée ici porte sur l’amélioration du processus d’optimisation en faisant
recours à un métamodèle issu des résultats de calculs CFD, afin de converger plus rapide-
ment vers l’optimum et ainsi de réduire le coût global de l’optimisation en utilisant une
approche multi-fidélité numérique-expérience. En effet, l’utilisation du premier niveau de
fidélité (numérique) permet de réduire le nombre d’évaluation du modèle haute fidélité
(expérience). L’impact sur les résultats d’optimisation avec l’ajout de ce niveau de fidélité
modifie la forme du front de pareto, mais influence peu la forme des lois optimales.
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Enfin, à travers des optimisations pour plusieurs valeurs de λ, ces travaux permettent
d’analyser la forme des lois de calages optimales pour plusieurs modes d’opérations. Ainsi
en mode cycloidal, pour de faibles valeurs de λ, il est nécéssaire de changer la loi de calage
pour modifier la poussée et conserver des performances optimales.

Summary

Cycloidal propulsion promises interesting application for the next generation of ships.
Its operating capabilities at low ship speed, as the well known Voith-Schneider Propeller,
and at high ship speed, as the Lipp propeller or ADVPropulse system, result on a versatile
and efficient propeller for a wide range of operation. Moreover, cycloidal propulsion is
characterized by the ability of rotating the thrust over 360◦ quasi-instantaneously. This
feature makes this technology an suitable choice for wind assisted ship propulsion as it
can balance the possible leeway of the ship.

Through this paper, authors pursue investigation of pitch law optimization using ex-
perimental cross flow platform developed these last years. Thanks to an electric blade
control architecture, this platform allows users to rely on blade pitch optimization using
surrogate models. The fitted parameterization of the pitch law involves large increase of
the global propeller performances according to the optimization objectives. The latest
results reveal 10 to 20% increase of the thrust and efficiency of optimized pitching laws
versus sinusoidal pitching laws classically used by mechanical cycloidal propeller.

In the continuity of pitch optimization, this paper investigates the use of a multi-
fidelity approach by integrating CFD simulation results as additional meta-model and thus
decrease the optimization cost. Indeed, the use of lower fidelity level (CFD) decreases the
number of evaluation of the higher fidelity level (experimental) during the optimization
process. Impact of the multi-fidelity process modifies the predicted Pareto front from
optimisation results. But it doesn’t affect the optimal pitching law shape.

Lastly, through the optimizations for various λ values, this study provides an analyse
of the optimal pitching law for many operating modes. Results reveal that for low λ
values, modifying the pitching law is essential to change the thrust and keep optimal
performances.

I – Introduction

Cycloidal propulsion is divided into two main operation modes for which blade motion
are significantly different: the cycloid motion which is used for low advance speed vessels
and trochoid motion which allows the ship to reach higher speed. Cycloidal motion is
charaterized by the rotation of the blades around the tangent to the rotor whereas for
the trochoid motion, the blades are rotating around the advance speed direction. The
advance value λ, is defined as the ratio of the advance speed VA to the blade peripheral
speed ωR, where R is the orbital radius of the propulsor and ω is the rotational speed
(in rad/s). When λ <1, the most suitable motion is the cycloidal motion whereas when
λ >1 it is the trochoidal motion. These blade kinematics are widely discussed in [2, 18, 5].
Since now, existing cycloidal propulsion technologies use a mechanical blade command,
as the well-known Voith Schneider Propeller which use a cycloidal motion, or Lipp and
ADVPropulse systems which use a trochoidal motion.

The development of the SHIVA platform these last years [5, 6] promises a wide range
of study for cycloidal propulsion optimization. Indeed, thanks to individual servo-motors
which actuates independently each blades, authors can test and optimize all type of blade
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kinematic for both cycloidal and trochoidal modes. This experimental platform is also
equipped with many sensors to measure performance of each pitch law tested. All the
features of the platform are widely explained in [5]. Growing use of CFD calculation to
study cycloidal propulsion and determining their performances is also noticeable as in
[12].

The specificity of the study presented here is to perform cycloidal pitch law optimiza-
tion using both experimental and numerical models to evaluate the performances. This
process, called multi-fidelity, has already been used but mainly with different numerical
models [20]. The innovation comes from the use of simultaneously numerical and ex-
perimental evaluation in the optimization procedure. The multi-fidelity process allows
the use of more parameters on the pitch law definition thanks to the lower number of
evaluation required (in comparison with a single fidelity process). Nonetheless, the use of
multi-fidelity process also allows authors to prepare various optimization for many λ val-
ues by evaluate performance of numerical points of optimization before the experimental
test week.

This paper describes first the two models used for the optimization: the experimental
test-bench SHIVA and the numerical CFD model. Then the optimization problem and
the pitch law parameterization are presented. The optimization method is then widely
explained. Finally, the results of multi-fidelity optimization for three different operating
points λ and for both cycloidal and trochoidal mode are discussed and compared.

II – Multi-models approach

As the optimization problem presented in this study is based on two distinct models
(experiments and numerical calculations), both of them require to be correctly defined.

The experimental setup is first described in Section II – 1. Then, Section II – 2 defines
the CFD numerical model implementation and validation. Finally, Section II – 3 deals
with the optimization problem and the adapted parameterization method.

II – 1 Experimental setup

To perform the optimizations, the experimental blade controlled cross-flow platform SHIVA
is operating at the IFREMER wave and current flume tank. Figure 1 gives an overview
of the platform, its positioning in the flume tank and the associated reference frames.
For interested readers, the technical features and control commands of the experimental
platform, along with its instrumentation and the post-processing of experimental signals,
are thoroughly detailed in [5]. For the present experimental campaign, the radius of the
rotary triangular frame is set at R = 0.4m, and blades are NACA0018 profile with a
chord length c = 0.15m, and a wet span of b = 0.92m. The embedded blade load-cell is
configured for a measuring range of 900N on the blade normal direction FNb

and 200N on
the blade tangential direction FTb

. The tank speed Vtank varies from 0.2m/s at λ=0.2 to
0.3m/s for λ={0.375, 0.5} and the rotational speed ω of the platform is adapted according
the definition of λ = V

ωR
.

Concerning measurements procedure, as detailed in [6], the data recording is proceed-
ing during 20 rotations of the platform after waiting that the tank flow is fully established.
The post-process of the experimental signals consists of a series of signal treatment (filter,
trigger-tunning, no-load signal subtraction, transformation matrix, turn trimming) and
the total blade forces from the 3 blades are constructed from the embedded load-cell blade
forces. Averages and coefficient are then calculated to compute the objective functions
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Figure 1: SHIVA experimental platform and reference frames definition.

of the optimization process. Finally any new optimized pitch law is directly transferred
from the optimization computer at the edge of the tank to the platform thanks to the
command Human Machine Interface.

II – 2 Numerical model

Numerical results presented in this paper are provided from 2D CFD calculations using
FINE/Marine software (version 11.2). The domain, illustrated in Figure 2, consists of a
rectangular hexahedral mesh, with a length of 150m and a width of 4m corresponding of
the experimental tank width. The cycloidal propeller is represented by the three 0.15m
chord blade profiles, rotating in the rectangular mesh. A dual sliding mesh method is used
to both, rotate the main rotor domain from the fixed rectangular domain, and rotate each
blade domain from the rotor domain (these sliding domains are highlighted in blue in
Figure 2) .

Figure 2: CFD mesh illustration with the different sliding domains.

The rotor domain rotates at the rotational speed ω whereas each blade domain rotates
at the pitch angle speed β̇1,2,3, thanks to a dynamic library compiled from the dedicated
pitch laws. Subdivision levels are used to refine the mesh near the cycloidal rotor and its
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wake, and additional subdivision levels are used to refine the mesh close to the blades. A
total of 68,250 cells are generated for the coarse mesh. As boundary conditions, a velocity
inlet is set on the left domain side, whereas pressure outlet is imposed on the right side
of the rectangular domain. Lateral boundaries of the rectangular domain (highlighted
in green in Figure 2) are specified as wall-functions conditions and mesh refinements
are applied. Finally, blades are specified as walls with no-slip conditions for which the
viscous layer is resolved with a minimal cell size corresponding to y+ = 1. The K-
Omega STT turbulence model is used to simulate the small eddy scale. Concerning
numerical parameters, spatial and temporal discretization use AVLSMART scheme, which
is conventionally used for the FINE/Marine ISIS-CFD solver. Finally, the timestep is set
to ensure a Courant number CFL below one, with a maximum of 25 nonlinear iterations
per timestep, and a total number of timestep corresponding to 20 rotations of the rotor
domain.

To verify the mesh sensitivity, a finer mesh is presently provided. It has been generated
with a number of cells up to 650,000 by doubling the number of cells in the initial rect-
angular domain, and therefore the following subdivision refinements. Figure 3 compares
the blade force coefficients between experiments and CFD calculations for the two coarse
and fine mesh, for the e = 0.8 cycloidal law, which is commonly used for Voith-Schneider
Propeller systems. This pitch law is symmetrical front/downstream and is generated by
an eccentricity parameter equal to 0.8 (the pitch law is illustrated on Figure 9 and its
definition is given by [18]).

Results of blade force coefficients show that both meshes are in good agreement with
experiments, especially when θ ∈ [0◦,270◦]. It should also be noted that peak transverse
force, for θ ≈ 180◦, is overestimated, but its location is well captured by numerical models.
On the downstream half, differences between numerical and experimental results appears
for θ ≈ 300◦. Nonetheless, since both meshes align well with the experimental results, the
coarse mesh is selected for the multi-fidelity optimizations to lower computational costs.

Figure 3: Comparison of different mesh size CFD results with the experimental mea-
surement on the blade thrust (left) and blade side force (right) coefficients. Operating
conditions: e = 0.8 pitch law, λ = 0.375, V = 0.2 m/s, ω = 1.33 rad/s.

Time step is another CFD parameter that has a major impact on the accuracy of
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Figure 4: Comparison of different azimuth steps dθ CFD results with the experimental
measurement on the blade thrust (left) and blade side force (right) coefficients. Operating
conditions: e = 0.8 pitch law, λ = 0.375, V = 0.2 m/s, ω = 1.33 rad/s.

results. To study its sensitivity, the timestep is expressed as azimuth step dθ = ωdt, and
the Courant number is expressed as function of the cell size dx located at the main rotor
domain interface: CFLω = R dθ

dx
. By adjusting the timestep, and thus, the azimuth step,

the Courant number is varying.
Figure 4 presents the dθ sensitivity for the coarse mesh and provides the blade-force

coefficients results. The case with the lower azimuth step dθ = 0.5◦ fits the experiments
very well especially on the first half of rotation and for the blade reversal. Higher azimuth
step show a lack of time resolution to correctly capture the flow development, especially
after the blade reversal θ ∈ [180◦,270◦]. For the optimization procedure, all simulations
are then performed with a timestep corresponding to dθ = 0.5◦.

Since optimization is also conducted at high lambda values for the trochoidal mode, the
same validation procedure is applied to a sinusoidal pitch law with a maximum amplitude
of 30◦. The same results are obtained but are not presented to conserve space in the
paper.

II – 3 Parametric and problem definition

The hydrodynamic performance of the cycloidal propeller is optimised by determining
the optimal blade pitch laws over a range of operating conditions. To achieve this, a
parametric model, inspired from [1, 6], of the pitch laws is adopted. For trochoidal mode,
it consists of defining ϕ = f(θ) as a cubic Hermite spline. In particular, the spline
interpolates two control points (θ1,ϕ1) and (θ2,ϕ2), imposing constraints on derivatives:
dϕ
dθ
(θ = θ1) = dϕ

dθ
(θ = θ2) = 0. To ensure C1 continuity of the blade pitch laws, the two

control points are repeated in θ = ±2π. For cycloidal mode, the method is similar with
β = f(θ), considering (β1,β2) instead of (ϕ1,ϕ2). Examples of parametric blade pitch laws
are provided in Figure 5 for cycloidal and trochoidal modes. The four-parameter setup,
(θ1,ϕ1,θ2,ϕ2) or (θ1,β1,θ2,β2), allows fine and non-symmetrical control of the maximum
amplitudes and associated azimuthal locations of the law. In addition to offering a wide
variety of generated laws, this parametric model preserves the fact of having ϕ(θ = 0) ̸= 0

6



Figure 5: Parametric model of cycloidal pitch laws at the left and trochoidal pitch laws
at the right.

or β(θ = 0) ̸= 0. Such properties are critical to maximizing the propeller’s performance
[6].

In the present work, hydrodynamic performances of the vertical axis propeller are
optimized over multiple operating points. An operating point means a fixed λ, and hy-
drodynamic performances are represented as objective functions. In other words, several
optimizations are presently solved at different λ values, where objective functions, to
be optimized, are dependent on the four-parameter pitch law setup. In particular, two
objective functions are considered:

CFx =
Fxtot

0.5ρSV 2
and C|Fyb

| =
|Fyblade|

0.5ρSV 2
(1)

Where CFx is the mean of total thrust coefficient over 360°, to be maximized, and C|Fyb
|

is the mean transverse blade force coefficient over 360°, to be minimized. In (1), S is the
swept frontal area (S = Dl) and V the flume tank flow velocity. The objective function
C|Fyb

| is implemented here and considers that any transverse force generated individually
by a blade is a loss of propeller efficiency.

Finally, the optimization problem to be solved for one operating point (fixed λ) is
expressed as

min
x∈Ω

− CFx(x), C|Fyb
|(x) (2)

Where x = (xi)1≤i≤4 ∈ Ω ⊂ R4 are design variables, to be determined, that define the
blade pitch law, (θ1,ϕ1,θ2,ϕ2) for the trochoidal mode, or (θ1,β1,θ2,β2) for the cycloidal
mode. The variability domain Ω, represented by blue and red rectangles on Figure 5,
depends on each mode:

• Cycloidal mode : θ1 ∈ [70◦,160◦], β1 ∈ [−100◦,− 30◦], θ2 ∈ [200◦,290◦] and β2 ∈
[10◦,70◦].

• Trochoidal mode : θ1 ∈ [90◦,160◦], ϕ1 ∈ [2◦,60◦], θ2 ∈ [180◦,260◦] and ϕ2 ∈
[−70◦,− 10◦].

The evaluation of objective functions in (1) is performed with a multi-model approach,
using both CFD and experimental measurements in the the flume tank. Indeed, a multi-
fidelity efficient global optimization strategy is presently applied (see Section III –).
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III – Optimization method

We consider abstract optimization problems, where several objectives have to be mini-
mized simultaneously over a design variable Ω ⊂ Rd:

min
x∈Ω

f1(x), . . . ,fm(x) s.t. g(x) ≤ 0 (3)

where x = (xi)1≤i≤d is a vector of design variables, f = (fj)1≤j≤m is a vector of objec-
tive functions to be minimized (fi : Ω 7→ R), and g = (gk)1≤k≤p is a vector of inequality
constraints (gk : Ω 7→ R). The existence of an optimal solution, minimizing all objectives
at once is usually not granted. This leads to the search for an optimal set of solutions,
called the Pareto front. According to the Pareto domination rule [7], x ∈ Ω is said domi-
nated by x′ ∈ Ω if for all 1 ≤ j ≤ m, fj(x

′) ≤ fj(x), and g(x′) ≤ 0. The set of optimal
(non-dominated) design vectors, to be determined in Ω, is then called the Pareto set. Evo-
lutionary algorithms [3] have been shown to be well-adapted for solving multi-objective
problems in real-word applications with moderate objective computation cost [8].

In the present work, individual evaluations of the objective functions are assumed to
be very expensive. A common approach is then to use surrogate models in place of f
to reduce the computational burden related to the evaluations of f . Gaussian processes
(GP) [17] are presently considered, which, owing to their statistical nature, provide for
each objective function, both a prediction value and a measure of the uncertainty (vari-
ance) in this prediction. These features are appealing in the optimization context, as
they can be exploited to derive rigorous optimization strategies, by evaluating sequen-
tially the objective functions at design vectors that maximize a so-called merit function
[16]. In mono-objective problems, GP-based approaches are globally referred to as Effi-
cient Global Optimization (EGO) [9], where the merit function is based on an Expected
Improvement (EI) criterion, expressing a trade-off between sampling in promising regions
and exploring in unsampled regions. EGO has been successfully applied to complex opti-
mization problems, such as non-linear fluid-structure interaction problems [19] or RANS
computations [13].

Over the last few years, surrogate-based approaches have also been proposed to ad-
dress the multi-objective problem. Indeed, several GP-based multi-objective optimization
strategies propose to extend the EI infilling criterion of [9]. The definition of the improve-
ment can then be considered over the Pareto front [22], using for instance, Maximin
distance [21], Euclidean distance [10], or the well-known Hypervolume infilling criterion
[4]. In particular, [14] have proposed and validated, on a real-word composite panel ap-
plication, the efficiency of a new merit function: Minimization of the Variance of the
Predicted Front.

When objective functions are evaluated using complex computational tools, it is typi-
cally feasible to define a series of models with different levels of fidelity and computational
costs to estimate their values. For example, the fidelity levels might correspond to finite
element models with varying mesh refinements, resulting in differences in computational
cost and accuracy. Thus, the global computational cost of the optimization can be re-
duced by using such different models in a multi-fidelity (MF) EGO framework [20]. In the
present work, the blade pitch law optimization problem is solved by using a multi-fidelity,
multi-objective EGO approach.

In Section III – 1, we summarize the construction of a GP model for an objective
function fj. Section III – 2 provides the extension of the GP surrogate construction
to the multi-fidelity case. Finally, definitions of multi-objective surrogate-based merit
functions, that are used in the present work, are provided in Section III – 3.
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III – 1 GP surrogate construction

In the present Section III – 1, the GP surrogate construction of an objective function
fj is provided. The method is exactly the same for the GP surrogate construction of an
inequality constraint function gk.

We consider a set of n training points X = (x1, . . . ,xn), each in Ω. The training points

are associated to the vector Y(j) = (y
(j)
1 , . . . ,y

(j)
n ) of noisy observations of the objective

function fj. It is assumed that y
(j)
i = fj(xi) + ϵ

(j)
i , where the ϵ

(j)
i are independent and

identically distributed Gaussian random variables having zero-mean and variance σ2
ϵj
.

The GP construction considers that fj(x) is a realization of a zero-mean multivariate
Gaussian process with covariance function Cj. We consider here the multidimensional
squared exponential covariance functions defined by

Cj(x,x
′; Θj)

.
= θ1

d∏
i=1

exp

(
−(xi − x′

i)
2

2l2i

)
+ θ2 (4)

where Θj =
(
θ
(j)
1 , θ

(j)
2 , l

(j)
1 , . . . ,l

(j)
d

)
is the vector of covariance hyper-parameters to be

inferred from the Y(j) observations. From the conditional rules of joint Gaussian distri-
butions [17], the best prediction f̂j(x) of fj(x), i.e. the mean of y(j), and the prediction
variance σ̂j

2(x) are given by,

f̂j(x) = kT
j (x)

(
Cj(Θj) + σ2

ϵj
I
)−1

Y(j) (5)

σ̂j
2(x) = κj(x) + σ2

ϵj
− kT

j (x)
(
Cj(Θj) + σ2

ϵj
I
)−1

kj(x) (6)

In (5) and (6) we have denotedCj ∈ Rn×n the symmetric covariance matrix of the training

points, κj(x)
.
= Cj(x,x; Θj), kj(x)

.
= (Cj(x,x1; Θj) · · ·Cj(x,xn; Θj))

T the covariance
vector between the observations in X and x, and I the identity matrix of Rn. The hyper-
parameters Θj and noise variance σ2

ϵj
can be determined by maximizing the log-marginal

likelihood (see [17] for more details).

III – 2 Multi-fidelity GP surrogate construction

In the present Section III – 2, the multi-fidelity GP surrogate construction of an objective
function fj is provided. Similar to the single-fidelity case (Section III – 1), the method
is the same for the multi-fidelity GP surrogate construction of an inequality constraint
function gk.

We consider the availability of a sequence of L models f
(1)
j , . . . , f

(L)
j of increasing

fidelity for the evaluation of objective functions, such that f
(l)
j (x)

l→L−−→ fj(x),∀x ∈ Ω.

The computational cost associated to the evaluation of f
(l)
j (x) increases with the fidelity

level l, and the objective of the MF-surrogate is to incorporate observations corresponding
to fidelity levels l < L, to improve the predictive capability of the surrogate model of
f
(L)
j (x).
The recursive formulation proposed in [11], that breaks down the determination of

the MF-surrogate in successive GP process constructions for each intermediate level, is
presently used in the non-nested formulation of [20]. The key idea is to define the MF-

surrogate at level l, denoted Y
(l)
j , as a correction of the MF-surrogate at level l − 1.

Specifically, we write for l = 1, . . . ,L

Y
(l)
j (x) = ρ

(l−1)
j Y

(l−1)
j (x) + δY

(l)
j (x), Y

(0)
j (x) = 0 (7)
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where ρ
(l−1)
j ∈ R accounts for the correlation between the two successive levels, and

δY
(l)
j (x) is the Gaussian correction process orthogonal to Y

(l−1)
j (x). The MF-surrogate

Y
(l)
j is then a GP that dependents on the previous level MF-surrogate and on the noisy ob-

servations of f
(l)
j (x), that is

[
Y

(l)
j (x)|Y (l−1)

j (x),Y(l)
j

]
∼ N

(
f̂j

(l)
(x), σ̂j

2
(l)(x)

)
, with mean

and variance respectively given by,

f̂j
(l)
(x) = ρj(l−1)

f̂j
(l−1)

(x) + kT
j(l)

(x)
(
Cj(l) + σ2

ϵj(l)
In(l)

)−1

∆Y(l)
j (ρj(l−1)

) (8)

σ̂j
2
(l)(x) = ρ2j(l−1)

σ̂j
2
(l−1)(x) + κj(l)(x) + σ2

ϵj(l)
− kT

j(l)
(x)

(
Cj(l) + σ2

ϵj(l)
In(l)

)−1

kj(l)(x) (9)

where ∆Y(l)
j is the vector of predicted residuals at training points and defined as

∆Y(l)
j (ρj(l−1)

) =

{
Y(l)

j , l = 1

Y(l)
j − ρj(l−1)

f̂j(l−1)(x ∈ X (l)), l ≥ 1
(10)

As in the single-fidelity case, the hyper-parameters of level l are selected by maximizing
the log-marginal likelihood of Y

(l)
j (see [17] or [11] for more details).

III – 3 Merit functions

Surrogate-based optimization methods rely on the sequential construction of statistical
surrogate models, using training sets of computed objective and constraint function values,
that are refined according to a prescribed infilling strategy [16]. At each iteration of the
iterative surrogate-based optimization, a new design vector xn+1 is thus added to X , and
finally f and g are computed. A new iteration can then start by updating surrogate
models, and the iterative process is repeated until a stopping criterion is satisfied or the
resources allocated to the optimization have been exhausted.

In the case of a multi-fidelity surrogate-based optimization, the fidelity level l∗ of the
model to be evaluated should also be determined [20]. In the present work, objective
functions are evaluated from CFD and experiments (high fidelity level). This multi-
model framework allows the construction of MF surrogates to reduce the global cost
of the surrogate-based optimization. Due to CFD costs (several hours for one design
vector) and the availability of experimental equipment, an optimization that includes the
selection of the fidelity level during EGO iterations [20] is not possible here. Consequently,
optimizations based on CFD models have been carried out prior to the experimental
campaign. This made it possible to identify the cases of interest for the experiments,
then during the experimental campaign, optimizations have been carried out by evaluating
only the highest fidelity level L (experiments), while exploiting the CFD calculations in
multi-fidelity surrogate models.

Similar to the previous work of authors [6], two new design vectors are determined and
added to X at each new iteration of the iterative surrogate-based optimization. Specifi-
cally, the Minimization of the Variance of the Predicted Front [14] and Expected Improve-
ment Matrix Hypervolume criterion [23] criteria are considered to allow respectively, the
reduction of the uncertainty of the predicted Pareto front and the improvement of the
computed Pareto front (see [6] for more details).
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IV – Results and discussion

A total of six multi-fidelity optimizations have been carried out during experiments in the
Ifremer flume tank at Boulogne-sur-Mer on May 2024. For some optimizations performed
over two consecutive days, the evaluation of an optimized pitch law is duplicated to ensure
measurement repeatability.

Section IV – 1 highlights first the interest of using different fidelity levels by comparing
two approaches:

• Single-fidelity optimization approach with the CFD model;

• Multi-fidelity optimization approach with CFD and experimental models.

Section IV – 2 presents global optimization results for both cycloidal and trochoidal
parameterizations at λ ∈ {0.2, 0.375, 0.5}.

IV – 1 Multi-fidelity process interest

Figure 6 shows the results from the arbitrary cycloidal optimization at λ = 0.5. Left graph
shows Pareto fronts on the objective space. Red squares correspond to CFD evaluations
of objective functions CFx and C|Fyb

|, sequentially determined with a single-fidelity EGO
optimization. The associated predicted Pareto front, at convergence, is given by red
circles. Experimental evaluations of objective functions are blues filled triangles, also
sequentially determined with an EGO optimization, but using multi-fidelity surrogates
(CFD and experiments). Hollow blue triangles are experimental evaluations of objective
functions, obtained from the sampling step and using a Latin Hypercube Sampling (LHS)
method. Finally, the multi-fidelity predicted Pareto fronts, after the sampling step and
at convergence, are given by blue hollow and filled circles respectively. It can thus be

Figure 6: Comparison of the single-fidelity and multi-fidelity results at cycloidal λ = 0.5
mode on the predicted Pareto fronts (left) and on the parametric space (right).

observed in Figure 6 that the two fidelity levels are very close for the prediction of the
Pareto front with respect to CFx . For C|Fyb

|, regarding the Pareto front, the objective is
slightly overestimated by the CFD. This result is, in principle, consistent, in the sense
that the cycloidal mode involves a more complex flow physics to model, with very rapid
dynamics, including vortex shedding during the blade reversal. The advantage of the
multi-fidelity approach is evident here, as the recursive construction of surrogate models
allows for the correction of the higher-fidelity prediction.
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At the right, the graph presents the optimal pitching laws generated by the points on
the Pareto fronts from both single and multi-fidelity at the three values of CFx (represented
by vertical black lines on the left graph). This second figure reflects the location of the
Pareto front points on the parametric space. The figure shows that along the three
locations on the fronts, optimal laws are very similar in terms of amplitude and phase
despite the gap on the Pareto fronts. This result demonstrates that even if the Pareto
fronts appear different between single and multi-fidelity, the optimal points are gathered
at the same locations in the parametric domain.

IV – 2 Global results

This section presents results of optimization for three values of λ with both cycloidal and
trochoidal parameterization methods. In Figure 7, cycloidal predicted Pareto fronts are
represented by hollow diamond scatters, whereas trochoidal predicted fronts are repre-
sented by filled square scatters. Colors represent the three λ operating point (green for
λ = 0.2, blue for λ = 0.375 and red for λ = 0.5). The upper right frame shows more pre-
cisely λ = 0.375 and λ = 0.5 predicted fronts. Finally, conventional symmetric pitching
laws (with eccentricity definition for cycloidal mode and sinusoidal for trochoidal mode)
are also represented as colored single points.

Figure 7: Pareto fronts obtained after multi-fidelity optimizations for various λ values.

Predicted Pareto fronts demonstrate that cycloidal mode is more effective in terms of
thrust gain and side force diminution than trochoidal motion for all three low advance
parameters. However, the gap becomes less pronounced for λ = 0.5 case. The capacities
of cycloidal mode is also higher than trochoidal mode: the Pareto front is wider and more
extended, especially for the case λ = 0.2. Figure 7 also proves than optimized pitching
law are more efficient than traditional symmetric laws in both modes (as discussed in
previous work [6]), because of the asymmetry upstream/downstream pitching laws.
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Figure 8 shows the temporal evolution of the force signals over one rotation for a
cycloidal and a trochoidal pitching to explain the gap between the two modes on the
predicted fronts at λ = 0.2. The results are extracted from experimental points closed to
the both fronts for which the total mean thrust is equal to CFx = −9 (represented by the
vertical black line on Figure 7).
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Figure 8: Temporal force signal comparison between trochoidal and cycloidal optimization
at λ = 0.2.

At the left, graphs illustrate respectively the single blade thrust coefficient, total thrust
coefficient and blade side force coefficient. The side force is represented in absolute value
(from which the second objective is calculated as the mean of the absolute value) and
in normal value in dotted line to compare the variations of the signal. The right graph
displays the blade pitch angles sampled every θ = 30◦ along the rotor. The θ = 0◦ position
is at the North whereas θ = 90◦ is at the West. Arrows indicate the total force (vectorial
sum of thrust and side force) at each positions. Lastly, dashed black lines represent relative
kinematic velocity directions at each positions. This kinematic velocity is defined as the
vectorial sum of the advance speed and the peripheral speed. The main comment is that
concerning the thrust, the mean value of the total thrust is the same whereas the variation
is significantly higher for the trochoidal mode at λ=0.2. The blade thrust coefficient shows
a large increase at θ = 120◦ of the signal for the trochoidal pitch law in comparison with
the cycloidal pitch law. This increase of thrust comes with an increase of the side force
at θ = 120◦ which is also observed on the total hydrodynamic force on the right graph at
this position. This can be explain by the fact that at this position the trochoidal blade
motion has an higher incidence angle considering the kinematic relative velocity. The
position θ = 210◦ presents also an interesting comparison. Whereas cycloidal blade is
nearly aligned with the kinematic velocity, the trochoidal blade becomes perpendicular to
the relative flow is thus a large drag appears especially at θ = 240◦ which causes mainly
a large side force.

To summarize this comparison, at λ=0.2 (and generally at low λ values), the trochoid
motion is mush less aligned with the relative flow direction, even with an optimized
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motion, and generates higher hydrodynamic loads which highly impact the alternative
blade load variation.

Lastly, Figure 9 presents the optimized pitch laws from several point of interest of
the cycloidal Pareto fronts from the Figure 7, highlighted in black. These points provide
a continuous sampling of the optimal pitching laws when we decrease the CFx traveling
through the cycloidal fronts. Indeed, the optimal law referred as n◦1 is the upper left
point of the Pareto front at λ = 0.2. The n◦2 optimal law is the lower right point of the
Pareto front at λ = 0.2. The two additional black diamonds on the λ=0.2 Pareto front
are the two intermediate green laws in Figure 9. Similarly, n◦3 and n◦4 optimal laws are
the two extremes points of the λ = 0.375 cycloidal Pareto front as the n◦5 and n◦6 for
λ = 0.5. Figure 9 also display the symmetrical law with eccentricity formulation, e = 0.8,
in dashed black lines.

Figure 9: Variation of the optimized pitching laws along all the Pareto fronts.

This figure strongly highlights the asymmetry of optimized pitching laws in comparison
with the e = 0.8-symmetrical law: for almost all optimized laws the upstream portion has
a larger amplitude than the e = 0.8-symmetrical law, whereas the downstream portion
has a lower amplitude. The blade reversal (when β crosses the 0-line) is also shifted
towards later than θ = 180◦ positions for all optimized pitching laws. This special feature
has also being observed previously in [6].

For each λ optimization, two generic trends can be observed for all optimal parameters:
more the required thrust is high and more is the amplitude and more closer are the two
central control points. Yet, these trends are less pronounced for the λ = 0.5 optimization.
Nevertheless, this pitch law study provides an important feedback for the operation of
cycloidal propeller at low advance parameter: the pitch law shape has a major impact on
the thrust generated with respect of optimal low side-force.

V – Conclusion

This paper presents an innovative multi-fidelity optimization of a cycloidal propeller blade
pitch laws with both numerical and experimental fidelity models. Indeed, according to
previous study, optimization of blade pitching laws shows huge benefits from conventional
symmetrical of traditional cycloidal propellers.
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First results of optimization show that the final Pareto front from the multi-fidelity
layer is slightly different that the single-fidelity Pareto front for C|Fyb

| objective. This is
explained by the fact that the single-fidelity process, the numerical CFD model, has a
lower prediction of complex flow physics than experiments. Nevertheless, the recursive
construction of surrogate models on the multi-fidelity process takes advantage of the high
fidelity level correction on the performances prediction. And even if multi-fidelity show
a slight difference on the Pareto front results, the predicted final optimal laws remain
similar that gives the optimization process confidence.

Global results for the optimizations at the three λ values provide many interesting
findings. First of all, cycloidal mode at low λ values overtakes trochoidal mode for both
objectives. Pareto fronts also show a wider area for cycloidal mode which allows a larger
capacity of changing thrust. The differences come from the incidence angle which is more
adapted for cycloidal laws than trochoidal laws at low λ, even with a parameterized for-
mulation. But more λ is closer to one and more the gap between cycloidal and trochoidal
modes reduces. Secondly, all the optimized pitching laws measured in experiments surpass
the conventional symmetric law performances, either in cycloidal or trochoidal motion.
This result principally comes from the faculty of dissymmetry the pitching law, with a
larger amplitude in the upstream phase and a lower amplitude in the downstream phase
than a symmetrical pitching law. Finally, the last finding concerns the way the optimized
law are changing along the Pareto fronts when we change the thrust. The amplitude of
optimal laws decreases as the required thrust increases. This evolution of the optimal
laws regarding the need in thrust at low λ values reveals the requirement of changing the
law to change the operation of the propulsor, at least for low λ values.

Perspectives concern the continuation of the optimization for λ > 1 and to determine
the optimal value to change from cycloidal to trochoidal mode (when the Pareto fronts are
overlapping). Authors will also investigate the use of lower fidelity model than CFD, such
as potential code [15], to explore other parameters as the propeller geometry (number
of blades, solidity, etc...). The final goal of cycloidal pitch law optimization study is
to implement a real time algorithm method for which the instrumented propeller can
adapt itself the pitch law according the incoming flow it experiences (under different
conditions such as the tidal effects, with leeway or under slipping for wind propulsive
system combination).
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cient optimization procedure in non-linear fluid-structure interaction problem: Appli-
cation to mainsail trimming in upwind conditions. Journal of Fluids and Structures,
69:209 – 231, 2017.
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