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p1qDépartement de Recherche, Bureau Veritas M&O, Saint Herblain, France
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Résumé

Le modèle HydroStar-V a été développé dans [7] pour évaluer les efforts exercés par la houle sur un navire
avec vitesse d’avance, ainsi que les mouvements induits. Il se base sur la linéarisation de l’écoulement autour
du navire par la méthode du double modèle et sur l’utilisation d’une fonction de Green avec effets visqueux.
Les résultats du modèle sont en excellent accord avec les mesures expérimentales sur les coefficients de masse
ajoutée et d’amortissement, les efforts d’excitation et les mouvements. Cette méthode a été récemment étendue
au calcul de la résistance ajoutée et à l’évaluation des champs de vagues autour du navire.

Un navire animé d’une vitesse d’avance dans la houle crée à la fois un champ de vagues stationnaire et
un champ de vagues instationnaire qui se superposent à la houle incidente. Le champ de vagues stationnaire
(équivalent à celui généré par le navire en eau calme) a été analysé dans [11], et le champ instationnaire dans [6]
pour la première fois, en utilisant la technique de la transformée de Fourier avec une fenêtre temporelle glissante.
Les spectrogrammes obtenus fournissent des informations intéressantes sur les champs de vagues mesurés au
point fixe. On a observé que ces champs de vagues ont des propriétés complexes mais fascinantes comme révélé
dans [2]. Il a été notamment repéré des vagues d’amplitude importante qui déferlent autour du navire selon
des lignes spécifiques qui se prolongent à une distance importante derrière le navire. Une méthode spécifique
d’analyse de ces champs de vagues est proposée qui se base sur des transformées de Hilbert spatiales [16]. Elle
permettra d’obtenir une représentation nombre-d’onde-fréquence du champ de vagues et d’analyser les vitesses
de phase des crêtes de ce champ de vagues directionnel complexe.

Summary

The HydroStar-Vmethod, based on the linearization over the ship-shaped stream (double-body flow) and
the use of free-surface Green function with viscosity effects, has recently been developed in [7] to compute
the wave loads on a ship advancing in waves and to evaluate the induced motions. Excellent agreement has
been achieved between the numerical results and benchmark model tests concerning the added mass, radiation
damping, wave excitation loads and ship motions. This method is recently extended to evaluate the second-order
loads on ships, and to compute ship-generated steady and unsteady waves.

A ship advancing in regular waves generates both steady and unsteady ship waves in addition to the incoming
waves. The steady ship waves (equivalent to those generated by ships in calm water) have been analyzed in [11],
and unsteady ship waves in [6] for the first time, by using the technique of short-time Fourier transform. The
obtained time-frequency spectrograms provide rich and useful information about these ship waves measured
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at a fixed point. It is well observed that these ship-generated waves have complex but fascinating features
as revealed in [2]. Notably, crests of large amplitude breaking along some lines in the vicinity of ship and
continuously extending to some distance far behind the ship have been reported. A specific method, based on
the spatial Hilbert transform [16], is applied to those ship-generated wave fields. This will allow a representation
of the wave fields with local wavenumber-frequency maps, to compute and analyze the local crest phase speeds
of this complex directional wave field.

I – Introduction

Considered as one of most difficult problems, the seakeeping prediction of a ship advancing in waves has
been studied in many research and developments based on the potential theory and boundary integral method,
including the simplified 2D strip theory, the 3D Rankine source method, and the free-surface Green function
method, as summarized in [15]. Comparing these two mainstream 3D methods, i.e., one based on the use of
free-surface Green function (GFM) and another based on the Rankine source method (RSM), the classical
GFM reducing the number of unknowns is more advantageous than RSM, since the unknowns are located on
the hull only thanks to the fact that the Green function satisfies the boundary condition on the free surface and
the radiation condition which cause substantial difficulties in RSM. Furthermore, wavy properties (dispersive
propagating waves) of potential flows are well represented by the Fourier elements in GFM while the Rankine
source is fundamentally representative for local and non-wavy flows. One of fair examples concerns the zero-
speed case. The great success of GFM in practical applications shows that GFM is incomparably superior to
RSM, in terms of accuracy and efficiency. We have thus pursued this method in order to extend the success to
the seakeeping with forward speed.

Indeed, our most recent results of research work on GFM are presented in [7]. The new method presented
accumulates a series of critical groundwork in both theoretical and numerical aspects. On top of all, we have
re-analysed the boundary value problem by choosing the ship-shaped stream as the base flow. This consideration
is not only for physical acceptance but also necessary by a rigorous analysis based on the perturbation theory.
The new and consistent boundary condition on the free surface is obtained with linearisation over the base
flow. Unlike the usual boundary condition of Neumann-Kelvin type based on the uniform flow (physically
unacceptable), the new formulation looks more complex due to interaction terms associated with the base flow.

We find the benefit of this complex boundary condition in the formulation of boundary integration equations.
Green’s third theorem is applied to the Green function and velocity potential of unsteady flow by performing
the vector integral analysis of their respective differential equations. The part of free-surface integrand corres-
ponding to the terms associated with the uniform flow is modified such that the equivalent waterline integral is
proportional to the normal derivative of the base flow. This waterline integral is then simply nil by the boundary
condition of base flow on ship hull. Free of waterline integral, it remains still integration of some free surface
terms. This remaining integral over the free surface is localized in a limited zone as the integrand function
depending on the ship-shaped stream is significant only in the vicinity of ship hull.

The Green function associated with a pulsating and translating source describes the fundamental solution to
ship-motion problems with forward speed. Many studies have been carried out to analyse its behaviours and to
develop numerical schemes for its computations. The most striking property is the peculiar singularity and fast
oscillations for field points approaching to the track of source point at or close to the free surface, as revealed in
[8]. This behaviour makes the waterline integral included in the classical BIE (Classical NK) nightmarish. The
same issue should be encountered in the computation of the free-surface integral involved in the New BIE.

Not satisfied with using treatments by lowering the waterline or by parametrising numerical filters to mask
the difficulty, we have examined its origin by introducing the neglected physical parameters like surface tension,
fluid viscosity or both. We have chosen the introduction of viscosity. Unlike the classical way introducing
fictitious viscosity (Rayleigh viscosity or Lighthill’s argument) which was just a mathematical device to make
waves propagating radially outwards, the analysis based on linearised Navier-Stokes equation and Helmholtz
decomposition in [4] yields the consistent kinematic and dynamic boundary conditions on the free surface with
viscosity.

The Green function with viscosity is then adopted. Unlike the inviscid Green function, there are three wave-
numbers all of which are complex. First two wavenumbers look like those of inviscid Green function for small
and moderate values, but significantly different for θ close to π{2. They can be large but not unbounded and
have an important imaginary part which damps all highly oscillatory waves. The third one having a negative real
part does not generate any waves and contribute to the local field. Being implicit and complex, the integrand
function of viscous Green function is free of singularities and numerical computations are facilitated.

As the matrix elements of linear system, the influence coefficients are the integration of Green function
and its derivatives on ship hull H and on free surface F . To guarantee the accuracy, analytical integrations
of the wavenumber integral function and its derivatives over flat panels of polygonal form are formulated for
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all configurations including panels of hull-to-hull, hull-to-freesurface and freesurface-to-freesurface. The usual
algorithm using Gauss points gives good accuracy for integration on hull panels. It is, however, necessary to use
excessive number of Gauss points to obtain a correct accuracy for panels on the free-surface.

To take advantages associated with the accuracy in the analytical integrations of Green function over flat
panels, we adopt the concept to use flat panels inside a bi-quadratic curved patch represented by using shape
functions. The velocity potential obtained by New BIE (Present GFM) on flat panels can be accurately extended
to its tangent derivatives necessary for pressure computations, by the derivatives of the shape functions.

To be sure that Green’s third theorem is well respected outside the fluid domain, the zero potential on
the waterplane inside the ship hull is imposed in addition to BIEs on the hull and on the free surface. This
over-determined linear system method, described in [12], has been successful to remove the effect of ”irregular
frequencies”, in our in-house software HydroStar for the solution of seakeeping at zero speed. Application of this
approach guarantees the well-conditioning of linear system. Indeed, there is an issue of ”irregular wavenumbers”
associated with BIEs in the forward-speed problem. As mentioned in [7], similar to the zero-speed case which
is a special case of forward-speed problems, the effect of ”irregular wavenumbers” appears for every encounter
frequency, remarkable by exaggerated oscillations of elementary solutions, in particular, the damping coefficients
obtained by using the Classical NK method. In the present GFM, smooth variation of added-mass and damping
coefficients illustrated in [7] demonstrates the efficiency of the approach used to remove the effect of irregular
wavenumbers.

The consistent decomposition of radiation coefficients and inclusion of speed-effect restoring forces are cri-
tically important. Indeed, the extraction of restoring forces embedded in the classical definition of added-mass
coefficients yields finite values for all coefficients at low-frequency range. The finding of restoring forces due
to the steady-flow pressure clarifies the controversy of non-zero stiffness in the horizontal directions and keeps
the physical consistency. Ship motions associated with the effect of restoring forces due to forward speed are
predicted with much improved accuracy.

Careful implementation of the present GFM has been realised in our in-house software HydroStar-V . Nu-
merical results obtained by using HydroStar-V are validated with classical benchmark cases, in particular, the
Wigley IV hull with a length-to-width ratio = 5 for which the effect of steady flow is important. The first
comparison has received many interesting discussions. The most recent experimental measurements on RIOS
bulk carrier summarized in [17], have been used to compare numerical results. In all cases, very good agreement
is obtained.

It is well observed that these ship-generated waves have complex but fascinating features as revealed in [2].
Notably, crests of large amplitude breaking along some lines in the vicinity of ship and continuously extending
to some distance far behind the ship have been reported. Here, we present our analysis on unsteady ship waves
by using the technique of short-time Fourier transform, further to that in [6]. The obtained time-frequency
spectrograms provide rich and useful information about these ship waves measured at a fixed point. Furthermore,
a specific method, based on the spatial Hilbert transform [16], is also applied to those ship-generated wave fields.
These will allow a representation of the wave fields with local wavenumber-frequency maps and to compute the
local crest phase speeds of this complex directional wave field. Once the phase speed is determined and associated
with fluid velocity, it is possible to detect the ship wave breaking event through the so-called kinematic breaking
threshold, i.e. the ratio of fluid velocity and phase speed.

II – Time-harmonic flows in HydroStar-V method

We define a Cartesian coordinate system pO � XY Zq fixed on the earth by choosing its pX,Y q plane to
coincide with the undisturbed free surface and the Z�axis oriented positively upward, and a moving coordinate
system po�xyzq in parallel with pO�XY Zq but to move at the same constant speed as ship along the positive
x direction. The relationship between these two coordinate systems is given by

x � X �X0 � UpT � T0q
y � Y � Y0

z � Z

(1)

in which pX0, Y0q are the coordinates of the origin o at the instant T0. The constants pX0, Y0, T0q are usually
put to be zero or X0 � �UT0 & Y0 � 0, for the sake of simplicity.

In the moving coordinate system translating at the speed Fr � U{?gL scaled with the acceleration due to
gravity g and ship length L, the fluid motion is represented by the velocity potential

Ψpx, y, z, tq � U rϕ̄0px, y, zq � xs � ϕ̄wpx, y, zq � φpx, y, z, tq (2)
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in which ϕ̄0px, y, zq the ship-shaped stream, the wavy steady potential ϕ̄wpx, y, zq and the time-harmonic velocity
potential φpx, y, z, tq. The time-harmonic potential is further written by

φpx, y, z, tq � ℜe
 
ϕpx, y, zqe�iωt

(
(3)

with the scaled frequency ω � ωe

a
L{g and t � T

a
g{L. The ship-shaped stream ϕ̄ satisfies the boundary

condition on the mean surface F and on the ship hull H

Bzϕ̄0 � 0

Bnϕ̄0 � n1

F

H
(4)

respectively, with n1 the x-component of the normal vector n � pn1, n2, n3q defined on H positively towards
interior of the fluid. The gradient of ship-shaped stream being denoted by w � ∇pϕ̄0 � xq � ∇ϕ̄0 � i, the
linearized boundary condition on the mean free surface

Bzϕ� ω2ϕ� 2iτw �∇ϕ� F 2
r w �∇pw �∇ϕq � F 2

r ∇ϕ � pw �∇qw � Bzzϕ̄0piτϕ� F 2
r w �∇ϕq � 0 (5)

with the Brard number τ � ωFr, satisfied by the unsteady potential on F . The boundary condition on the ship
hull is written on H at its mean position

Bnϕ �
#
�ξ0Bnϕ0 diffraction

ξjp�iωnj � Frmjq radiations
(6)

The potential ϕ0 representing incoming waves is known to take Airy’s form

ϕ0 � �ek0z�ik0px cos β�y sin βq{ω0 (7)

with the wave frequency ω0 scaled with
a
L{g, the wavenumber k0 � ω2

0 and wave heading β. In (11), ξ0 is
the amplitude of incoming waves and ξj for j � 1, 2, � � � , 6 denote the six elementary motions including the
translations T � pξ1, ξ2, ξ3q and rotations R � pξ4, ξ5, ξ6q around the centre of gravity. The vector components
pnj ,mjq for j � 1, 2, � � � , 6 are those of the generalized normal vector and those of mj terms depending on
ship-shaped stream w, given in [14] :

pn1, n2, n3q � n

pn4, n5, n6q � r^ n

pm1,m2,m3q � �pn �∇qw
pm4,m5,m6q � �pn �∇qpr^wq

(8)

with the position vector r defined by

r � tx� xG, y � yG, z � zGu (9)

with respect to the center of gravity rG � pxG, yG, zGq. Following the boundary condition (11) on H, the
unsteady potential can be decomposed by

ϕ �
6̧

j�1

ξjp�iωϕj � Frϕj�6q � ξ0ϕ13 (10)

associated with the boundary condition

Bnϕj �

$'&
'%
nj j � 1, 2, � � � , 6
mj�6 j � 7, 8, � � � , 12
�Bnϕ0 j � 13

(11)

onH. It is worth noting that the boundary condition (5) should be satisfied by ϕj for j � 1, 2, � � � , 12 individually,
and by the sum ϕ13 � ϕ0 of diffraction potential ϕ13 and that of incoming waves ϕ0 given by (7) so that (5)
becomes non-homogeneous (a non-zero forcing term) associated with ϕ0 for diffraction problem.

Applying the Green’s theorem to the couple functions pϕj , Gq in the fluid domain, the velocity potential
ϕjpP q for j � 1, 2, � � � , 13 can be expressed by the surface integral

ϕjpP q �
¼
H

�BnϕjpQqGpP,Qq�ϕjpQqBnGpP,Qq
�
dSpQq

�
¼
F

�
F0pP,QqϕjpQq � F1pP,QqBxϕjpQq � F2pP,QqByϕjpQq

�
dSpQq

(12)
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involving GpP,Qq the Green function, and F0,1,2pP,Qqq are dependent on the ship-shaped stream ϕ̄pQq � x,
and GpP,Qq, given in [7], which are only significant in the vicinity of ship hull. Applying (12) for a field point
P pξ, η, ζq on the hull H, the new BIE is then written as

1

2
ϕjpP q �

¼
H

ϕjBnGdS �
¼
F

pF0ϕj�F1Bxϕj�F2Byϕjq dS�
¼
H

GBnϕj dS (13)

for P P H, which should be combined with one BIE on the free surface since pϕ, ϕx, ϕyq are unknown on F .
Similar to the new BIE on H, the BIE for a field point P on the free surface is obtained

ϕjpP q �
¼
H

ϕjBnGdS �
¼
F

pF0ϕj�F1Bxϕj�F2Byϕjq dS�
¼
H

GBnϕj dS (14)

for P pξ, η, ζ � 0q P F . In addition, we apply the third Green theorem to a field point P located inside the ship,
i.e., outside of the fluid domain limited by H Y F . In particular, at some points on the waterplane denoted by
W , the integral equation is written as¼

H

ϕjBnGdS �
¼
F

pF0ϕj�F1Bxϕj�F2Byϕjq dS�
¼
H

GBnϕj dS (15)

for P pξ, η, ζ � 0q P W inside the ship hull.
The hull integral on the left hand side of (13) and the free-surface integral of (14) represent the principal

value in the sense of Cauchy. As mentioned foregoing, there is, in addition, an integral on F on the right hand
side of (13)-(15) associated with the forcing term due to incoming waves (7) for the diffraction problem, is given
explicitly in [7]. The linear system combining BIE on H (13) and BIE on F (14) is of square form, i.e., the same
number of equations as that of unknowns, since the tangent derivatives of unknowns on F can be transformed
to unknowns ϕ by using shape functions in higher-order patch method, or any scheme of finite-difference type.
In order to be sure that Green’s third theorem is well respected outside of the fluid domain - zero potential
inside the ship. The additional equation (15) is formulated for P on the waterplane W . The system is then
over-determined. A linear system of rectangular form can be resolved using the standard Lapack library.

The Green function GpP,Qq involved in (13)-(15) is the space function in the definition

Gpx, y, z, tq � ℜe
 
Gpx, y, zqe�iωt

(
(16)

representing the fundamental solution at the field point P pξ, η, ζq associated with a translating and pulsating
source located at Qpx, y, zq. It satisfies the special Poisson equation

∇2GpP,Qq � 4πδp|P �Q|q (17)

with δp�q the Dirac delta function, in the fluid domain. Based on the thorough analysis of the Laplace-Fourier
transform applied to the Stokes flow, in [3], the leading effect of vorticity is represented by an additional term
appearing in the boundary condition at the free surface. Indeed, the linear boundary condition with dissipation
is written by

Gz � ω2G� 2iτGx � F 2
r Gxx � 4ϵ̄pFrGxzz � iωGzzq � 0 (18)

on z � 0. In (18), the coefficient ϵ̄ � ν{
a
gL3 is proportional to the fluid kinematic viscosity ν. It is shown

that the magnitude of elementary waves ekζ�ipkξ�ωtq decays like e�4ϵωk2|ξ| and more rapidly with short waves
of large wavenumber. This implies that the complex singular and highly oscillatory behaviours in GpP,Qq due
to short waves predicted in [8] just disappear.

By applying Fourier transform to differential equations satisfied by the Green function, we write

GpP,Qq � �1{r � 1{r1 �GF pP,Qq (19)

in which r � |P � Q| is the distance between the source point Qpx, y, zq and the field point P pξ, η, ζq and
r1 � |P � Q1| is that between the mirror source Q1px, y,�zq and P pξ, η, ζq. The free-surface term GF pP,Qq is
given by the Fourier integral in polar pk, θq coordinates

F 2
r G

F pP,Qq � 1

π

» π

�π

dθ

» 8

0

dk
k

Dpk, θqe
kZ (20)
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Figure 1 – Wave patterns (left) and crestlines (right) for τ � 0.2 (top) and τ � 0.5 (bottom)

with the speed-scaled Fourier variable k and Z � v� iw with

v � pζ � zq{F 2
r ¤ 0

w � cos θpξ � xq{F 2
r � sin θpη � yq{F 2

r

(21)

in their speed-scaled form. The denominator of the integrand function in (20) is the dispersion function resultant
from the Fourier transform of the boundary condition (18) in [4] written by :

Dpk, θq�pk cos θ�τq2 � k � i4ϵpk cos θ�τqk2 (22)

The coefficient ϵ in (22) is scaled by ϵ � ν{pF 3
r

a
gL3q � νg{U3. The cubic dispersion equation Dpk, θq � 0 gives

three complex roots denoted by :
k1,2,3pθq � κ1,2,3pθq � iµ1,2,3pθq (23)

which can be found by applying Cardano’s formulae. Once we have the wavenumbers ki for i � 1, 2, 3 (roots of
dispersion equation), the inner integral in k can be performed analytically so that

F 2
r G

F pP,Qq � 1

π

» π

�π

�
A1KpZ, k1q �A2KpZ, k2q �A3KpZ, k3q

�
dθ (24)

called formulation of Havelock type, in which KpZ, kiq is called wavenumber integral function given in [3] as

KpZ, kiq �
» 8

0

ekZ

k � ki
dk � ekiZE1pkiZq � iπ rsgnpµiq � sgnpµiv� κiwqsHpκiqekiZ (25)

with the sign function sgnp�q, the Heaviside function Hp�q and the exponential-integral function E1p�q defined
by (eq.5.1.1) in [1]. The amplitude functions Aipθq for i � 1, 2, 3 in (24) are of regular function which can have
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Figure 2 – Time series of time-harmonic ship waves for τ � 0.2 (top) and τ � 0.5 (bottom) at ω2X0 � 0 and
ω2Y0 � 2 (first line), 6 (second line) and 10 (third line)

sharp variation at θ � �pπ� θcq with θc � arctanp16τ2� 1q for τ ¡ 1{4. Furthermore, the wavenumber integral
function KpZ, kiq � KpP,Q, θ, kiq � Kpai � ibiq with pai, biq being real numbers depending on pκi, µi, v,wq
according to its definition (25) is a regular function for v   0, except for a logarithmic singularity at v � 0 � w.

The integration of KpZ, kiq over a flat panel is formulated analytically by using the node coordinates of the
panel. The efficient formulation is developed by inspiring from the course handout [9] and by applying Stokes’
theorem to transform a panel surface integral to a contour integral along the panel’s sides.

III – Kinematics of time-harmonic ship waves

The analysis of the wavenumber integral function defined by (25) shows that the first term on the right
hand side is a smooth and non-oscillatory function. The second term is of oscillatory and determines the wave
component associated with the point source. There are three wavenumbers (23) by the dispersion equation of
which the third one has a negative real part pκ3   0q so that it does not contribute to the wave component. The
polar integral (24) associated with the first two wavenumbers can be, in fact, converted to simple line integral
along associated wavenumber curves in the Fourier plane. Indeed, the analysis in [2] based on the method of
stationary phase, gives the direct relationship between the geometrical properties of dispersion curves in the
Fourier plane and the characteristics of far-field waves including crestlines of different wave systems with their
wavelength and cusp angles, phase and group velocities, etc.

The wave patterns associated with a point source located at the origin obtained by (24) are depicted on
the left part of Figure 1 for τ � 0.2 on the top and τ � 0.5 on the bottom. In each picture with color map,
the real part and imaginary part are drawn on the upper half and lower half, respectively. On the other side,
the crestlines associated with a series of constant phases are depicted on the top-right of Figure 1 for τ � 0.2
and those on the top-right of Figure 1 for τ � 0.5, respectively. Three distinct wave systems are remarkable for
τ � 0.2. The ring wave system with shorter and longer wavelengths on upstream and downstream, respectively,
in accordance with the Doppler effect. The two other systems of V-shape waves are inner-V and outer-V waves
with smaller and larger cusp angles, respectively. The ratio between wavelengths of V waves and ring waves is
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Figure 3 – Time-frequency spectrograms of time series for X0 � 0 and ω2Y0=2 (top), 6 (middle) and 10
(bottom) at τ � 0.2 (left column) and τ � 0.5 (right column)

proportional to τ2 � 0.04 so that V waves are of very short wavelength. In Figure 1 showing wave patterns at
τ � 0.5, inner-V waves with smaller cusp angle and ring-fan waves with larger cusp angle. Both wave systems
are present only on the downstream.

In the moving coordinate system, the time-harmonic waves are of a unique frequency as defined in (3) and
(16). In the earth-fixed coordinate system, they can be expressed by

φpX,Y, Z, tq � ℜe
 
ϕpX � Frt, Y, Zqe�iωt

( � ℜe
 
ΦpX,Y, Zqe�iΩt

(
GpX,Y, Z, tq � ℜe

 
GpX � Frt, Y, Zqe�iωt

( � ℜe
!
G̃pX,Y, Zqe�iΩt

) (26)

with the frequency Ω dependent on the position pX,Y q of observer on the earth.
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The time series (26) measured at a fixed point pX0, Y0q are depicted in Figure 2 for τ � 0.2 on the top with
X0 � 0 and ω2Y0 � 2 by the first line, 6 (second line) and 10 (third line), and for τ � 0.5 on the bottom, with
ω2X0 � 0 and ω2Y0 � 2, 6 and 10, respectively. At τ � 0.2, ring waves are present for t   0, i.e., at a position
x ¡ 0 on the upstream. The oscillation frequency is higher than the encounter frequency on the upstream and
much lower on the downstream. The superposition of three wave systems (inner-V, outer-V and ring waves)
yields a quite complicated time series. At τ � 0.5, no waves on the upstream when t   0. Only waves are present
for t ¡ 0, i.e., on the downstream (x   0) where the inner-V waves and ring-fan waves are superposed.

The method based on the short-time FFT to obtain time-frequency spectrograms (TFS) and developed in
[10, 11] is applied to analyze these time series. The TFS ”heat” maps for τ � 0.2 with ω2Y0 � 2, 6 and 10
corresponding to the three time series in Figure 2 are illustrated on the left column of Figure 3. It is remarkable
to see some strips (bands) of L-shaped boomerangs with two wings (branches). Unlike steady ship waves whose
TFS present only one L-shaped boomerang with a horizontal branch (transverse waves) and a slanting one
(divergent waves), here we have two boomerangs and one additional band at very low frequencies. The two
L-shaped boomerangs are associated with the inner-V waves on the top and the outer-V waves at a lower
position, respectively. The horizontal branches correspond to transverse waves in the inner-V and outer-V wave
systems, while the slanting branches correspond to divergent waves. The two branches of outer-V waves are
joined together at t � 18, 54 and 96 while those of inner waves at t � 34, 102 and 170, respectively. The
low-frequency bands on the bottom of heat maps are associated with ring wave system and present for both
t   0 (upstream) and t ¡ 0 (downstream). The frequency is higher for t   0 and much lower for t ¡ 0.

At τ � 0.5, there exist again two L-shaped boomerangs illustrated in Figure 3. The one on the top is
associated with the inner-V waves and another on the bottom with ring-fan waves. The horizontal branch of
lower boomerang is at very low frequency corresponding to partial ring waves and the slanting branch with
increasing frequency linked to the fan waves. The upper boomerang is similar to the top one at τ � 0.2 as it
is associated with the inner-V wave system. The two branches of ring-fan waves join at t �3.8, 11 and 19 for
ω2Y0 � 2, 6 and 10, respectively.

It is important to note mistakes in the Figures 3-4 and Figures 5-6 presented in [5], which are corrected and
reprinted here as Figure 2 for the time series and Figure 3 for the time-frequency spectrograms, respectively.
More information like the slope of slanting branches, and nodes where spectrum values are minimum along the
slanting branches of divergent waves and fan waves, as well as those along the partial-ring waves, which can
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Figure 4 – Time series of time-harmonic ship waves (top) for τ � 0.2499 at ω2X0 � 0 and ω2Y0 � 2 (first line)
and 8 (second line), and its TFS (bottom) at ω2X0 � 0 and ω2Y0 � 2 (left) and 8 (right)
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Figure 5 – Phase velocity vectors of unsteady ship waves in the earth-fixed coordinate system for ω � 1 and
Fr � 0.251 at t � 0 on the upper part and t � 10 on the lower part

be derived in a way similar to that used in [10, 11], is also insightful for understanding physical properties of
unsteady ship waves.

At a special case of τ � 0.2499 with (ω � 1 and Fr � 0.2499), the times series generated by a point source
at pX0, Y0q � p0, 2q and pX0, Y0q � p0, 8q are depicted by the first line and second line, respectively, on the
upper part of Figure 4. Waves are present in both upstream (t   0) and downstream (t ¡ 0). The ring waves in
the upstream and the transverse waves of outer-V waves in the downstream are of same frequency and higher
than the encounter frequency defined in the moving coordinate system. This is confirmed by the time-frequency
spectrograms presented on the lower part of Figure 4. The spectrograms corresponding to pX0, Y0q � p0, 2q and
pX0, Y0q � p0, 8q are illustrated on the left and right of Figure 4 (lower part), respectively. The frequency of
upstream ring waves and that of downstream transverse waves are equal to Ω � 2ω according to eq.(17) in [6].
Similar to the case of τ � 0.2, there are two slanting branches of L-shaped boomerangs associated with the
inner-V and outer-V waves.

The Spatial Hilbert Transform Method (SHTM) has recently been developed and summarized in [16] for
multi-directional wave fields. Assuming the input waves represented by ηpX,Y, tq as a function of space pX,Y q
and time t, spatial Hilbert transforms HX , HY , HXY at each time instant t with respect to X,Y and pX,Y q are
used to obtain an envelope function ApX,Y, tq and a phase function γpX,Y, tq. Both ApX,Y, tq and γpX,Y, tq
are real functions and used to reconstruct the input waves by

ηpX,Y, tq � ApX,Y, tq cosrγpX,Y, tqs (27)

of which the phase function can be assumed to be expressed by

γpX,Y, tq � K1X �K2Y � Ω t� γ0 (28)

with an initial phase γ0 independent of pX,Y, tq. Furthermore, the local wavenumbers pK1,K2q and frequency
Ω are assumed to be slowly-varying with respect to the space-time variables pX,Y, tq so that

K1 � Bγ{BX
K2 � Bγ{BY
Ω � �Bγ{Bt

(29)

following [18]. Once pK1,K2,Ωq are obtained at pX,Y, tq by using (29), the local phase Vp and group velocity
Vq vectors are defined by

VppX,Y, tq � ΩpK1,K2q{pK2
1 �K2

2 q
VgpX,Y, tq � pBΩ{BK1, BΩ{BK2q

(30)
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according to [13]. This SHTM developed in [16] is applied to analyze unsteady ship waves. As an example, the
special case of ω � 1 and Fr � 0.251 is considered and the local phase velocity vectors VppX,Y, tq are illustrated
by the red arrows in Figure 5 over the wave patterns. The pictures at the instant t � 0 and t � 10 are drawn on
the upper part and lower part of the Figure, respectively. The orientation of local phase velocity is well shown
to be at the right angle to crestlines. The magnitude of ring-fan waves (both upstream and downstream) is
much larger than that of transverse and divergent waves which are present only downstream.

Finally, the time-harmonic ship waves around the Wigley IV hull are computed by HydroStar-V and illustrated
in Figure 6 for the special case of τ � 0.2499. There are 3x3 pictures on each of which the real and imaginary
parts of ϕjpx, y, z � 0q for j � 3, 5, 9, 11, 1 and 13 associated with the boundary condition (11) on the hull,
evaluated by using HydroStar-V are depicted in the upper half and lower half, respectively. On the left column,
the potentials ϕ3pn3q, ϕ5pn5q and ϕ1pn1q are shown at the first line, second and third line, respectively, while on
the right column, ϕ9pm3q, ϕ11pm5q and ϕ13(dif) are presented. Upstream ring waves are of large amplitude and
downstream V-waves are originated mostly from the bow part. Remarkable differences are shown in the close
vicinity of hull although wave patterns are similar at some distance from the hull. Their TFS will be shown
during the presentation at conference.
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Figure 6 – Time-harmonic ship waves around Wigley IV hull for ω � 1 and Fr � 0.2499 : ϕ3pn3q & ϕ9pm3q
at the first line, ϕ5pn5q & ϕ11pm5q at the second line and ϕ1pn1q & ϕ13(dif) at the third line. On each of six
pictures, the real and imaginary parts are illustrated on the upper and lower halves, respectively.
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IV – Conclusion

The time-harmonic ship waves, limited to the velocity potential for the sake of simplicity without loss of
generality, are analyzed in both the moving and earth-fixed coordinate systems. Composed of several distinct
wave systems, including ring waves, V-waves and ring-fan waves, they are of the same frequency (encounter
frequency) in the moving reference system, i.e., by observation on the ship. On the contrary, ship-generated
waves are of different frequencies depending on the observation location in the earth-fixed reference. Accordingly,
different wave lengths and wave propagation directions are observed, depending on the location and time. By
using the windowed short-time FFT and SHTM, we are able to obtain time-frequency spectrograms (TFS) and
local phase-velocity vector maps. The results are insightful to better understand ship-generated time-harmonic
waves. They provide not only important information of unsteady wakes, useful to detect ship speed and heading
from wave field measurements, but also indications of wave breaking event through the so-called kinematic
breaking threshold, i.e., the ratio of fluid velocity and phase speed.
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[9] P. Guével. L’écoulement à surface libre : Préliminaires mathématicques. Ecole Nationale Supérieure de
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