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Résumé

L’objectif de ce travail est de réaliser l’optimisation géométrique de pales d’hydrolienne
en utilisant une combinaison de simulations basse et haute fidélité. L’hydrolienne tripale à axe
horizontal développée par l’IFREMER, est prise comme point de départ. Le processus d’op-
timisation vise à augmenter le coefficient de puissance CP tout en réduisant le coefficient de
poussée CT . Pour ce faire, la distribution de l’angle de calage, de la corde et de l’épaisseur de la
pale est modifiée. Tout d’abord, une approche basse fidélité, utilisant la BEMT, est employée.
Des simulations de plus haute fidélité sont ensuite exécutées à l’aide de la méthode RANS avec
le logiciel STAR-CCM+. Pour réduire le nombre de simulations, une optimisation basée sur des
métamodèles (Surrogate-Based Optimization) est effectuée à l’aide d’un optimiseur développé
en interne. Une méthode de krigeage hiérarchique est utilisée pour prendre en compte simul-
tanément les données provenant des calculs BEMT et CFD.

Summary

The goal of this work is to carry out the geometric optimization of tidal turbine blades
using a combination of low and high-fidelity simulations. A 3-bladed horizontal axis water
turbine previously investigated by IFREMER is taken as a starting point. The optimization pro-
cess aims to increase the power coefficient CP while reducing the thrust coefficient CT . To
achieve this, the distribution along the blade of pitch angle, chord and thickness is modified.
First, a computationally efficient low-fidelity approach using the Blade Element Momentum
Theory (BEMT) method is employed. High-fidelity CFD simulations are then executed using
the RANS method with STAR-CCM+. To reduce the number of steps, a Surrogate-Based Op-
timization (SBO) is conducted using an in-house optimizer. A hierarchical kriging method is
used to simultaneously take into account data coming both from BEMT and CFD.
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I – Introduction

Nowadays, the importance of renewable energy is beyond doubt. Renewable energy is consi-
dered a key solution for the ecological transition. Marine current, a natural and readily available
source of energy, can be harnessed by devices like tidal turbines. These turbines convert the ki-
netic energy of the moving water into mechanical energy, ultimately converted into electricity.
The shape of a turbine’s blades determines its aerodynamic performance and, consequently,
its efficiency. To enhance the performance of tidal turbines, blade shape optimization can be
conducted. To perform this kind of optimization, many numerical tools can be employed, with
various levels of fidelity. Depending on computational cost, numerical tools can be categori-
zed into two groups : high-fidelity and low-fidelity approaches. High-fidelity approaches have
higher computational cost (several hours of computation) but are considered more accurate.
Methods such as LES, URANS, and RANS fall into this category. Low-fidelity tools are less
time-consuming (a few seconds or minutes of computation) but may produce less reliable re-
sults. The choice of numerical methods significantly impacts the optimization process, which
aims to achieve the desired objectives with minimal computational resources while maintaining
confidence in the results. For this reason, a multi-fidelity optimization is carried out. Multi-
fidelity optimization uses low-fidelity approaches to identify relevant designs and concentrates
computational effort on the promising designs using high-fidelity models. In this study, BEMT
serves as the low-fidelity model, while high-fidelity computations are performed using RANS.
The optimization process aims to increase the power coefficient CP such that CT (X) < CTinit

,
where X is the design vector and CTinit

is the initial geometry’s thrust coefficient. The opera-
ting conditions are set as : λ (Tip Speed Ratio) = 4.0, TI (Turbulence Intensity) = 1.5 % and U∞
(upstream velocity) = 1 m.s−1.

II – Geometry of the turbine

A 3-bladed horizontal axis water turbine previously investigated by IFREMER ([9, 3]) is
taken as a starting point. The radius of the rotor, denoted R, has a value of 362.0 mm. The
hub radius, denoted Rhub, has a value of 55.0 mm. To perform 3D RANS simulations, only the
hub and the blades of the device are considered (Figure 1). The geometry is based on 63-4XX
NACA 6-digit profile series, with truncated trailing edge (Figure 2).

In this study, the blade is parameterized using twenty-three 2D profiles. Each of these pro-
files corresponds to a specific section of the blade along its spanwise direction (Figure 1). These
2D profiles are defined by 3 parameters : chord, thickness and pitch angle denoted θ (Figure 2).
With this parameterization, a complete blade design is defined by twenty-three triplets. There-
fore, the best design can be found by optimizing the distribution of these 3 parameters along the
blade.

The root (the base where the blade connects to the hub) of the blade is a cylindrical section
with a diameter of 21 mm. Details of the initial blade parameterization are given in Table 4.

III – BEMT

III – 1 Description of the method

The Blade Element Momentum Theory (BEMT) combines the Blade Element Theory (BET)
and the Momentum Theory (MT). BEMT relies on dividing the stream tube passing through the
rotor disc into annular sections. Consequently, the blade is also divided into different sections

2



FIGURE 1 – Geometry of the hub and the
blades, showing the different sections.
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FIGURE 3 – Blade element section subjected to local velocity.

in the span-wise direction. On each of these sections, the momentum equation (Eq. 1) and the
angular momentum equation are applied (Eq. 2).

dTi = 4πrρU2
∞(1− a)aFdr, (1)

where dTi is the thrust of the ith element, r is the radius of the section, ρ is the water density,
U∞ is the upstream velocity, a is the axial induction factor, F is a correction factor to model the
tip and/or hub loss and dr is the blade element and annular section width.

dQi = 4πr3ρU∞Ω(1− a)a′Fdr, (2)

where dQi is the torque of the ith element, Ω is the rotation speed and a′ is the tangential
induction factor.

Within Blade Element Theory (BET), the thrust and torque are obtained by considering them
as projections of the drag and lift forces acting on the blade element (Eq. 3 & 4). BEMT method
leads to a nonlinear system of equations that can be solved to determine the axial and tangential
induction factors.

dTi = B
1

2
ρV 2

total(Cl cos(ϕ) +Cd sin(ϕ)) cdr, (3)

where B is the number of blades, Vtotal =
√
[U∞(1− a)]2 + [Ωr(1 + a′)]2 is the total velocity

at the section, Cl is the lift coefficient, Cd is the drag coefficient, ϕ is the relative flow angle and
c is the chord of the profile.

dQi = B
1

2
ρV 2

total(Cl sin(ϕ) +Cd cos(ϕ)) cdr (4)
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Power coefficient CP and thrust coefficient CT can be defined as follows :

CP =
QΩ

1
2
ρπR2U3

∞
, (5)

where Q is the total torque of the turbine, Q =
∑N

i=1 dQi with i the section index and N the
total number of sections.

CT =
T

1
2
ρπR2U2

∞
, (6)

where T is the total thrust of the turbine, T =
∑N

i=1 dTi.
The polars of the different profiles are necessary to perform BEMT. Polars are generated

using the software XFOIL. Polars are extrapolated using Viterna’s method ([15]). Ncrit para-
meter in XFOIL is utilized to predict the boundary layer transition from laminar to turbulent
flow. Ncrit can be determined with the following equation ([13]) :

Ncrit = 5− 6.18× log10(TI), (7)

where TI is the turbulent intensity (in percentage) of the free-stream.
To perform the computation of the polars, XFOIL requires the Reynolds Number and the

Ncrit value. These parameters were set during the validation stage (section III – 2). There are
numerous correction models for the BEMT to take account of hub and tip loss ([8]). These
correction models are employed to improve BEMT prediction, involving modifications of the
factor F in Eq. 1 & 2. In our study, various models were investigated. For tip loss, Glauert’s
model (Eq. 8) and Prandtl’s model (Eq. 9) were evaluated.

FGlauert =
2

π
arccos

[
exp

(
−B(R− r)

2r sin(ϕ)

)]
, (8)

where FGlauert is the Glauert’s tip loss correction factor.

FPrandtl =
2

π
arccos

[
exp

(
−B

2
(1− λr

λ
)
√
1 + λ2

)]
, (9)

where FPrandtl is the Prandtl’s tip loss correction factor and λr =
λr

R
is the local speed ratio.

For hub loss, AERODYN (NREL) model (Eq. 10) was evaluated.

FNREL =
B

2

r−Rhub

r sin(ϕ)
, (10)

where FNREL is a hub loss correction factor and Rhub is the hub radius.
If both hub loss and tip loss correction models are applied, the final correction factor F is

obtained by multiplying the hub loss correction factor by the tip loss correction factor. If no
correction is applied, the correction factor F is equal to one.

To select the model used during the optimization process, an investigation was conducted as
part of the validation step (section III – 2).

III – 2 Validation

Experimental data, such as the evolution of the coefficients CP and CT as a function of
TSR, are available for IFREMER’s turbine geometry. These data were used for the validation
step. In the present work, we performed the calibration of BEMT to improve the accuracy of its
predictions. Four BEMT parameters were selected for calibration :
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• Reynolds Number
• Turbulence Intensity (TI)
• Tip loss model
• Hub loss model

Different values were tested for each of these parameters. The aim of calibration is to find
the combination of parameters that minimises the error between the experimental data and the
BEMT predictions. The specific values tested for each parameter are listed in Table 2.

A Design of Experiment (DoE) was conducted to test every possible configuration of the
parameters. To measure the quality of a configuration, a mean error is computed. This mean
error is denoted σBEMT (Eq. 11). The performances observed experimentally and numerically
are compared for the following TSR values : λ = {3.0, 3.5, 4.0, 4.5, 5.0}.

σBEMT =
σCP−BEMT + σCT−BEMT

2
(11)

σBEMT is function of the mean error on CP denoted σCP−BEMT (Eq. 12) and of the mean error
on CT , denoted σCT−BEMT .

σCP−BEMT =
1

5

4∑
i=0

∣∣∣∣∣CPBEMT (i)
−CPexp(i)

CPexp(i)

∣∣∣∣∣ , (12)

where i is the index of the different λ, CPBEMT (i)
is the power coefficient obtained for the ith λ

with the BEMT method and CPexp(i)
is the power coefficient obtained for the ith λ experimen-

tally.
σCT−BEMT is obtained similarly to σCP−BEMT , except that CT is the quantity of interest

instead of CP . The configuration which minimises σBEMT is given in Table 1.

TABLE 1 – Optimal parameters for BEMT.
Reynolds TI (%) Tip loss model Hub loss model
5.0× 105 1.0 Glauert No loss model

For this configuration σBEMT = 11.6 %. BEMT results with this configuration are shown in
Figures 7. It can be seen that the accuracy of the BEMT method decreases as the TSR increases.
This work focuses on optimizing for a fixed TSR value of 4.0. At this TSR, BEMT predictions
for both CP and CT demonstrate good agreement with experimental data.

As previously indicated, the thickness distribution along the blade is optimized. This op-
timization process modifies the airfoil profile for each section of the blade. Consequently, to
assess the performance of a turbine design, it is necessary to compute polars for each of the
twenty-three sections. This method takes a few minutes to evaluate a single turbine design.

If the polars are already known, it takes only few seconds to perform BEMT for a full turbine
geometry. Based on this observation, polars were computed for every thickness between 10 %
and 60 % with a step of 0.5 %. Then, linear interpolation is achieved to compute polars. This
technique significantly reduces computational cost.

The error caused by the interpolation is evaluated for the initial geometry. The mean error is
denoted σinterp (Eq.13). This error is function of the mean error on CP denoted σCP−interp (Eq.
14) and of the mean error on CT denoted σCT−interp.

σinterp =
σCP−interp + σCT−interp

2
(13)
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FIGURE 4 – Fluid domain and boundary conditions for RANS simulation.

σCP−interp =
1

5

4∑
i=0

∣∣∣∣∣CPBEMT (i)
−CPBEMT−interp(i)

CPBEMT (i)

∣∣∣∣∣ , (14)

where CPBEMT−interp(i)
is the power coefficient obtained for the ith λ with the interpolated polars.

The equation to calculate σCT−interp is similar to Eq. 14, except that CP is not the quantity of
interest ; it is CT .

Finally, the mean error σinterp caused by the interpolation for the initial geometry has a value
of 0.12 %.

IV – RANS

IV – 1 Description of the method

Numerous studies ([16, 12]) have shown that RANS simulations provide good predictions
of CP and CT at a lower computational cost compared to URANS or LES methods. That is why
RANS simulations were conducted to assess the performance of the turbine. By exploiting the
symmetry of the problem, only one third of the fluid domain and of the rotor are simulated. The
result is a significant reduction in calculation time. A drawing of the fluid domain and of the
boundary conditions is shown in Figure 4.

IFREMER’s flume tank has a rectangular cross-section, with a width of 4m denoted Wtank

and a height of 2 m denoted Htank. The radius RD of the fluid domain has a value of 2.2 D,
where D = 0.724m is the diameter of the rotor. The value of RD was chosen to maintain the
observed blockage ratio in IFREMER’s current flume tank. Indeed, the cross-sectional area of
the fluid domain is equal to the cross-sectional area of IFREMER’s tank (Eq. 15).

πR2
D =WTank ×HTank (15)

The geometry of the turbine is generated with the open-source software FreeCAD. Meshing
and CFD simulations are both conducted with the software STAR-CCM+.

IV – 2 Validation

To choose the upstream distance, denoted Lup and the downstream distance, denoted Ldown,
of the fluid domain, tests were conducted. It was verified that an increase in Lup or Ldown does
not modify the performance of the turbine.

The k − ω SST turbulence model is used for the study ([7]). RANS simulations can be
achieved using a Single Reference Frame (SRF) method or by using Multiple Reference Frames
(MRF). Tests were conducted with both methods. A better agreement with the experimental
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FIGURE 5 – Convergence study for CP and
CT parameters, operating conditions : λ =
4.0, TI = 1.5 %, U∞ = 1m.s−1.

FIGURE 6 – Mesh of the cross-section of
the fluid domain.

results and a reduction of the residuals errors was observed with MRF. For this reason this
method was selected.

To select the mesh properties, simulations were carried out using polyhedral, tetrahedral,
and trimmed meshes. Tetrahedral meshes were found to be unreliable due to repeatability is-
sues. This means that even if two tetrahedral meshes are very similar, they could produce signi-
ficantly different simulation results. Trimmed meshes and polyhedral meshes generated equiva-
lent results in terms of CP and CT . However, trimmed meshes had the drawback of generating
numerous poor quality cells at the trailing edge. Finally, the polyhedral meshes were preferred.
To ensure a y+ value lower than 1 on the blade, the near wall thickness of the prismatic layer
was set to 2.4× 10−6m. Mesh refinement was applied near the blade and in the wake region. A
view of the mesh in the cross-section is presented in Figure 6.

A convergence study was conducted on the initial geometry for both CP and CT parameters
(Figure 5). The finest mesh used for the study is made of 24.2 million elements. Compared to
the finest mesh, the 9.4 million elements mesh shows a difference of 2 % for CP and of 0.7 %
for CT . During the optimization process, meshes are generated with the same configuration as
the 9.4 million elements mesh.

Simulations were run on 96 CPUs, to reach convergence 4000 iterations were performed. The
cluster used is composed of 16 Intel(R) Xeon(R) Gold 6252 CPUs, totaling 384 cores. Meshing
is performed in parallel. Finally, the total computation time for a simulation with 9.4 million
elements, including both meshing and CFD, is 1.2 hours. Key parameters are summarized in
Table 3.

The validation step was completed for both BEMT and RANS computations, comparisons of
these methods are presented in Figure 7.

V – Optimization method

V – 1 Modification of the blade

In order to reduce the dimension of the design vector, the distribution of chord, thickness and
angle along the blade are parameterized using a method which combines B-splines and Free-
Form Deformation (FFD) ([11]). A diagram illustrating the principle of the method is shown
in Figure 8, a more detailed explanation is provided below. For each distribution, a regression
is performed along the blade to determine the position of the B-spline’s control points. On
the diagram, the distribution used for the regression is represented by green triangles (“Data
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FIGURE 7 – Comparison of RANS and BEMT methods against experimental data for CP (left)
and CT (right).
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FIGURE 8 – Diagram of the parameterization using B-spline and FFD.

Points”). The initial B-spline obtained is represented by a black curve (“Initial Geometry”) and
has 5 control points (“Initial Control Points”). To create a new blade shape, these initial control
points will be displaced in two ways : directly by the optimizer or by FFD method.

First, some selected control points are directly adjusted by the optimizer, as shown by the
blue arrows in Figure 8. The new positions of those control points are represented by red dots,
they are referred as “Main Control Points”. An “Initial FFD Grid” is constructed based on the
positions of the Main Control Points before their displacements. This grid is then deformed to
create a “Modified FFD Grid” that reflects the new positions of the Main Control Points.

Next, the control points that were not directly displaced by the optimizer are moved using
the FFD method. The new positions of these points are represented by red crosses and are
referred to as “Intermediate Control Points”.

The final B-spline, defined by the displaced control points (Main Control Points and Inter-
mediate control Points), is highlighted in red in the diagram and is referred to as “Modified
Geometry”.

For chord, thickness and angle distributions, 4 control points are selected to be directly ad-
justed by the optimizer. Chord distribution is presented in Figure 10). This results in a design
vector X of dimension 12. The vector is normalized, all its components are between -1.0 and
1.0.
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FIGURE 9 – Diagram of the optimization workflow.

V – 2 Multi-fidelity strategy : Hierarchical Kriging

The optimization process aims to increase the power coefficient CP such that CT (X) <
CTinit

, where X is the design vector and CTinit
is the initial geometry’s thrust coefficient. This

optimization problem can be expressed as follows :

Min −CP (X)

subject to
X ∈ [−1,1]12

CT (X) < CTinit
,

(16)

with −CP (X) the objective function and CT (X)−CTinit
the constraint function for which a

negative value is seek.
The main steps of the optimization are presented in Figure 9, explanations are given below.

It is well known that Genetic Algorithms (GA) are suited for tidal turbine geometric optimi-
zation ([6]). GA has the advantage of avoiding local minima and converging toward the global
minimum. However, GA requires several evaluations to converge and can therefore be com-
putationally expensive. In our study, the BEMT is a cheap-to-evaluate method to obtain the
quantities of interest CP and CT . That is why GA is used for the low-fidelity approach. The
differential evolution method from SciPy’s optimization toolbox ([14]) was used as the GA.
The constraint in the GA is managed by a penalization method.

A first Design of Experiments (DoE), D1, is obtained with BEMT computations. D1 is
generated by Latin Hypercube Sampling (LHS) ([5]). LHS is used to reduce discrepancy.
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D1 =
{
X1i , y

o
1i
, yc1i

}
i∈[1,...,N1]

, with X1i a design vector, yo1i a value obtained for the objective
function, yc1i a value obtained for the constraint function and N1 the size of the DoE. The index
1 refers to the low-fidelity approach, the index o to the objective function and c to the constraint.

D1 is then utilized to build kriging models corresponding to the low-fidelity method for both
the objective function and the constraint function. The kriging method employed here is known
as “Universal Kriging” (details in [4, 1]). With this method, it is assumed that the stationary
random process for both the objective and the constraint functions has the following form :

Y (X) = βf(X) +Z(X), (17)

with β a vector to tune, f representing the trend functions, Z(X) a stationary random process of
null mean and covariance function given by Cov[Z(X),Z(X′)] = σ2R(X,X′). σ2 is the process
variance, R the spatial correlation function depending on hyperparameters vector Θ and of the
choice of a kernel. Here, a constant trend function f : x → 1 and an exponential kernel are
used. The hyperparameters are tuned by Maximum-Likelihood-Estimation ; further details can
be found in references [4, 1].

The predictive means and variances for the low-fidelity kriging are denoted ŷo1, σ̂
2
yo1
(X) for

the objective function and ŷc1(X), σ̂2
yc1
(X) for the constraint function.

Hierarchical kriging is used to build the kriging corresponding to the high-fidelity model.
In fact, the predictive means of the low-fidelity kriging are used as trend functions for the high-
fidelity kriging.

The predictive means and variances for the high-fidelity kriging model are denoted as
ŷo2(X), σ̂2

yo2
(X) for the objective function and ŷc2(X), σ̂2

yc2
(X) for the constraint function. The

means are utilized as surrogates, while the variances serve as error estimators for the predictions
made by these surrogates.

To reduce the number of steps, a Surrogate-Based Optimization (SBO) is conducted using
an in-house optimizer ([10]). SBO methods rely on cheap-to-evaluate surrogate models to ap-
proximate objective and constraint functions. During this process, new designs are tested with
RANS simulations and the kriging is updated. The constraint is handled using a penalty term,
resulting in a set of unconstrained minimization problems based on the surrogates.

VI – Preliminary results

The presented results are preliminary. An optimization process was conducted to test the
method. The parameters for the low-fidelity approach are listed below :

• The differential evolution method from the SciPy library ([14]) was used as the GA with
the following parameters : popsize = 15, maxiter = 10, polish = True.

• Total number of computations performed : 1992.
For the high-fidelity approach the parameters were :

• Number of computations for the initialization of the kriging (LHS) : 30
• Number of computations run in one loop : 5
• Number of loops : 4

A loop corresponds to a call of the optimizer, it is after each loop that the kriging is updated
and new designs are given.

A total of 50 RANS simulations were conducted on a 96 CPUs cluster. The full optimization
process with the high-fidelity approach took 65 hours to complete. The final distribution of the
chord along the blade is presented in Figure 10. All the distributions are stored in Table 5.

Finally, by comparing the RANS results for both the initial and the optimized geometry, it
can be seen that the optimized geometry increases CP by 1.5 % and reduces CT by 10.4 %.
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FIGURE 10 – Comparison of the chord distribution along the blade for nominal and optimized
geometry.

VII – Conclusion

Geometric optimization of tidal turbine blades was conducted using a combination of low
and high-fidelity simulations, yielding preliminary results. The method employs B-splines and
Free-Form Deformation (FFD) to adjust the distribution of pitch angle, chord, and thickness
along the blade. Initially, a computationally efficient low-fidelity approach based on Blade
Element Momentum Theory (BEMT) is employed. Then, high-fidelity CFD simulations are
executed using the RANS method. Surrogate-Based Optimization (SBO) is utilized to reduce
computation time. Hierarchical Kriging (HK) is used to construct surrogates, enabling the use
of low-fidelity kriging to construct a trend function for the kriging corresponding to the high-
fidelity model. Validation of the numerical tools has been conducted to verify both the BEMT
and RANS modeling against existing experimental results. Finally, the optimization process
increases the power coefficient CP by 1.5 % and reduces the thrust coefficient CT by 10.4 %.
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Appendix

TABLE 2 – Parameter values for the BEMT validation.
Reynolds TI (%) Tip loss model Hub loss model
1.0× 104 1.0
5.8× 104

1.5

Glauert No loss model
1.5× 105

1.7× 105

3.5× 105 2.0 Prandtl AERODYN
(NREL)5.0× 105 3.0
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TABLE 3 – Summary of key parameters.
RD (m) Wtank (m) Htank (m) D (m)

1.59 4.0 2.0 0.724

Ldown (m) Lup (m) Elements Number Mesh
10.9 2.9 9.4 million Polyhedral

SRF/MRF TI (%) Turbulence model U∞ (m.s−1)
MRF 1.5 k− ω SST 1.0

TABLE 4 – Details of initial geometry
blade profiles.
r/R Chord (mm) Thickness (%) Pitch (deg)
0.152 21.0 Cylinder Cylinder
0.157 21.0 Cylinder Cylinder

0.177 47.50 43.0 23.2
0.189 60.00 32.0 22.8
0.200 72.26 27.0 21.8
0.222 87.50 22.0 20.7
0.264 86.59 21.3 17.3
0.306 83.30 21.4 14.2
0.348 79.06 21.7 11.9
0.390 74.94 22.0 9.9
0.432 71.10 22.2 8.4
0.474 67.55 22.4 6.9
0.515 64.20 22.5 5.8
0.557 61.20 22.5 4.9
0.599 58.40 22.4 4.1
0.641 55.79 22.2 3.3
0.683 53.52 21.9 3.0
0.725 51.48 21.5 2.3
0.767 49.63 20.9 2.0
0.809 47.95 20.2 1.4
0.851 46.38 19.5 1.1
0.893 44.98 18.6 0.7
0.934 43.65 18.0 0.3
0.976 42.45 18.0 0.2
1.000 22.93 25.0 −0.5

TABLE 5 – Details of optimized blade pro-
files.
r/R Chord (mm) Thickness (%) Pitch (deg)
0.152 21.0 Cylinder Cylinder
0.157 21.0 Cylinder Cylinder

0.177 57.5 38.0 31.1
0.189 68.6 26.9 30.4
0.200 80.6 22.1 29.6
0.222 91.0 17.4 27.8
0.264 89.5 15.7 24.0
0.306 83.4 16.6 20.2
0.348 76.6 17.0 17.1
0.390 71.3 17.2 14.6
0.432 67.9 17.8 12.4
0.474 65.4 18.8 10.4
0.515 62.9 19.6 8.6
0.557 60.5 20.1 7.0
0.599 58.6 20.5 5.6
0.641 57.1 21.0 4.3
0.683 55.8 21.4 3.0
0.725 54.6 21.4 2.0
0.767 53.6 20.9 1.3
0.809 53.0 19.6 1.0
0.851 52.5 18.1 1.0
0.893 52.1 16.5 1.1
0.934 51.9 14.5 1.4
0.976 51.8 13.7 1.8
1.000 32.9 20.0 1.5
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