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Résumé

Dans le but de réduire les émissions de gaz à effet de serre du transport maritime, la
traction à l’aide de kites fait l’objet d’études ces dernières années. Dans la majorité des
expérimentations, le kite réalise une trajectoire en forme de huit. Cet article étudie le sens
de déplacement du kite sur cette trajectoire afin d’optimiser la force de traction. Pour cela,
un modèle de dynamique du vol à trois degrés de liberté est utilisé, avec une définition
simplifiée des efforts aérodynamiques. Un contrôleur basé sur un PID y est associé pour
permettre le suivi de trajectoire. Les résultats montrent que la force de traction moyenne
est plus importante dans le sens "down-loop". Cependant, une plus grande variation de
celle-ci est observée dans le sens de déplacement optimal, ce qui peut conduire à une
fatigue plus importante des câbles et de la structure du kite.

Summary

Within the frame of greenhouse gas emissions reduction from shipping, kite traction
has been the subject of research in last decades. In most experiments, the kite follows a
figure-of-eight trajectory. This article studies the direction of motion of the kite on this
trajectory, either in ‘up-loop’ or in ‘down-loop’, in order to optimize the traction force.
To this end, a three-degree-of-freedom flight dynamics model is used, with a simplified
definition of the aerodynamic forces. A PID-based controller is used for trajectory tracking.
The results show that the average traction force is greater in the down-loop direction.
However, a greater variation is observed in the direction of optimal displacement, which
can lead to greater fatigue of the cables and the kite structure.
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I – Introduction

The 2023 International Maritime Organisation green house gas strategy envisages a
reduction in carbon intensity of international shipping. The objective is to reduce CO2
emissions per transport work (as an average across international shipping) by at least
40% by 2030. So, in an effort to reduce carbon emissions from maritime transportation,
the use of kite sails for ship propulsion has been under study since the 1980s, initially
by J.F. Wellicome [13]. The development of this technology involves the study of kite
trajectories, with a particular focus on optimising the traction force. However, in practice,
the trajectories approximately follow a lemniscate or a horizontal eight pattern to avoid
line crossings, which generate friction between them and can lead to breakage.

To investigate this problem, dynamic flight models for simulating energy production
using kites were proposed by Loyd [10], these featured zero mass and point mass models.
Over the past few decades, rigid body and lumped mass models have been developed
employing various methods, including the Lagrangian approach introduced by Sánchez-
Arriaga et al. [12], which uses rigid bars and springs to simulate the line of a rigid kite.
Additionally, Eijkelhof and Schmehl [3] proposed a model employing lumped mass for the
tether of a small rigid aeroplane. Lumped mass can also be used to model the deformation
of the kite during simulation, as suggested by Fechner et al. [5].

Alongside the development of simulation tools, trajectory optimization has first been
conducted using simple models, as proposed by Houska and Diehl [7] or by Long et
al. [9]. Additionally, some optimisation work has been carried out through experimental
approaches, as suggested by Fagiano and Novara [4]. However, the direction of motion
along an eight pattern trajectory (if the kite goes upward or downward in the loop) has
not been extensively studied. This paper addresses this gap, focusing on the subject by
employing a simplified flight dynamics model based on the one proposed by Houska and
Diehl [6].

The first part of this paper presents the improved model based on the one of Houska
and Diehl [6] that have been developed. The key contribution of this study lies in the
integration of the variation of the aerodynamic coefficient as a function of the rotation
rate, allowing for the consideration of traction performance losses during turns. In the
second part, the optimal direction of motion along a lemniscate is examined.

II – System modelling

This section provides a description of the mechanical model employed. Firstly, the main
reference frames used are outlined. Next, the assumptions are presented and discussed,
followed by a detailed presentation of the equations of mechanics and the corresponding
expressions for the forces acting on the system. Subsequently, the model for controlling
the kite’s trajectory is explained. To conclude this section, the model is verified against
existing results from Houska and Diehl [6].

Regarding the notation used in this study,vectors are indicated with an −→, while time
derivatives are represented by dotted variables.

II – 1 Reference frames

Four reference frames are used to express the position, orientation, and aerodynamic
forces acting on the kite (see figure 1) :
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(a) Problem representation, at Θ = π
2 , with the boat

full downwind. Consequently, the kite transverse axis −→yb
is equal to −→et the transverse flow reference frame vector
(−→yb = −→et ).

(b) Problem representation with the
kite facing its apparent wind ; the
longitudinal kite vector −→xb is equal
to the azimuthal unit vector −→eΦ, and
unit apparent wind vector −−→wan is op-
posite to the longitudinal kite vector
−→xb (−−→wan = −→eΦ = −−→xb).

Figure 1 – Reference frames

— The reference frame linked to the point attached to the ship (point A), which is
defined by −→ex , tangent to the ship trajectory (figure 1a) ; −→ey , horizontal and extends
to port side of the ship (figure 1a) ; and −→ez , vertically upwards (figure 1b).

— The spherical reference frame {−→eΦ,−→eΘ,−→er}. −→er is the radial unit vector which points
directly outward from A to K, the center of inertia of the kite. −→eΘ is the polar
unit vector which points in the direction of deacreasing co-latitude angle Θ which
corresponds to motion in the vertical direction on the sphere. −→eΦ is the azimuthal
unit vector defined by −→eΦ = −→eΘ ∧ −→er .
The angles Φ and Θ, defining the kite’s position in spherical coordinates are repre-
sented with uppercase letters.

— The kite’s reference frame. It consists of −→xb , pointing from the back to the front of
the kite ; −→yb , pointing from the left wingtip to the right wingtip of the kite ; and
−→zb , pointing downwards.

— The aerodynamic frame, composed of −→wan, the unit vector collinear with the kite’s
apparent wind vector ; −→et , which lies in the plane defined by −→wan and −→yb and is
orthogonal to −→wan ; and −→en, orthogonal to both −→wan and −→et . {−→wan,

−→et , −→en} forms a
direct frame.
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II – 2 Equations of motion

The method employed to derive the equations of motion is based on the point mass
model developed by Houska and Diehl [6]. In this model, the kite is characterised as a point
mass, allowing its orientation to be arbitrarily defined as facing it’s apparent wind. It is
assumed that the kite flies on a flight sphere with a constant radius, and that the lift and
drag coefficients are constant. The control of the kite is achieved through the orientation
of the aerodynamic force, which is influenced by the roll angle ϕb. This model has been
modified to incorporate lift and drag coefficients as functions of yaw rate, ψ̇b, as well
as the moment equation in yaw. In this section, the equations governing the position are
presented first, followed by the treatment of the moment equation. In the model presented
here, the following equations (1)-(8) are directly extracted from the work reported in [6].

The Newton’s equations are written in spherical coordinates. The unknowns are the
kite’s position on the flight sphere defined by the longitude Φ and colatitude Θ angles, as
well as the force in the cables

−→
Fc directed along −→er .

−→
Fg +

−→
Ff +

−−→
Faero − ∥

−→
Fc∥−→er

mi

=

 −rΘ̇2 − r sin2 (Θ) Φ̇2

r sin (Θ)Φ̈ + 2r cos (Θ)Φ̇Θ̇

−rΘ̈ + r sin (Θ) cos (Θ)Φ̇2

 (1)

Houska and Diehl introduced the notions of inertial and gravitational masses, which
take into account the influence of the cables in the 2nd Newton’s law and in the gravita-
tional force expression [6]. The inertial mass is defined as mi = mkite +

1
3
mcables, and the

gravitational mass as mg = mkite +
1
2
mcables. These notions are also recently re-used by

Joshi et al.[8].

Gravity forces The gravity force, denoted
−→
Fg, is given by eq.(2). It takes into account

the Archimedes’s force as well as the weight of the kite. The air density is denoted as ρ
and the gravity constant g.

−→
Fg = (V ρ−mg) g

−→ez (2)

Aerodynamic force on the cables The second force considered is the aerodynamic
drag on cables, denoted

−→
Ff . Following the model proposed by Houska and Diehl [6], it is

expressed as :
−→
Ff =

CDC
ρAc

8
∥−→wa∥−→wa (3)

where CDC
is the cable drag coefficient, Ac the projected crosswind cable area and ρ the

air density.

Aerodynamic force on kite The aerodynamic force, denoted
−−→
Faero, is decomposed

into drag and lift components. These depend on the kite’s yaw speed ψ̇b through the
aerodynamic coefficients. The force is given by :

−−→
Faero =

1

2
ρCL

(
ψ̇b

)
Ab∥−→wa∥2−→en +

1

2
ρCD

(
ψ̇b

)
Ab∥−→wa∥−→wa (4)

Ab is the kite area, CL

(
ψ̇b

)
and CD

(
ψ̇b

)
are respectively the aerodynamic coefficients

coefficient for the lift and drag components and −→wa is the apparent wind speed. These
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quantities are defined by using the following equations proposed by Bigi et al. [2] :
CL

(
ψ̇b

)
= CL0 + kl

√
Ab

∥−→wa∥ |ψ̇b|

CD

(
ψ̇b

)
= CL

(
ψ̇b

)
tan

(
GLA

(
ψ̇b

))
GLA

(
ψ̇b

)
= GLA0 + kGLA

√
Ab

∥−→wa∥ |ψ̇b|

(5)

where the glide angle is noted GLA. GLA0 and CL0 are the aerodynamic parameters of the
kite without rotation speed. The coefficients kl and kGLA describe the loss of aerodynamic
performance as function of the yaw velocity, for a wing of a given aspect ratio.

The apparent wind is obtained from the true wind, −→wr, and the kite’s velocity, −→vk :
−→wa =

−→wr −−→vk (6)

in which the true wind vector is given by
−→wr = [w (h) cos (δ)− vs]

−→ex + w (h) sin (δ)−→ey (7)

where δ is the angle formed between the true wind and the ship direction, −→vs is the ship
velocity and w (h) is the wind velocity as function of the altitude, denoted h. This latter
is defined with [6] :

w (h) =
ln
(

h
hr

)
ln
(

h0

hr

)w0 (8)

where w0 is wind reference velocity at the reference altitude h0 and hr is a roughness
length, as defined by Houska and Diehl [6] or by Maat et al. [11].

Yaw equation To simplify the model, the centre of inertia is considered to be at point
K, where the aerodynamic force is applied. Additionally, the non-diagonal terms of the
kite’s inertia matrix are neglected, as the moment equation is solved for only one degree
of rotation. This simplification helps to avoid potential discontinuities in other rotations
that could yield non-physical values. This phenomenon is due to the control model, which
could lead to discontinuities in the kite’s roll acceleration. These assumptions lead to the
equation (9) at the centre of inertia, where ψ represent the yaw angle (angles describing
the kite’s orientation using Euler angles are denoted with lowercase letters), M is the
moment due to external forces, and Izz denotes the moment of inertia about the yaw
axis :

ψ̈ =
Maero

Izz
(9)

As the gravitational force is assumed to act at the inertia centre, its moment acting
on the kite at this point is zero.

The moment due to the cables is neglected because it is assumed that they are connec-
ted to freely rotating point in the vicinity of the centre of inertia.

The only moment retained in the analysis is the aerodynamic one. Around the radial
axis, it depends on the kite’s drift angle, and yaw rotation speed. It is given by :

Maero =
1

2
ρ∥−→wa∥2Abb

(
Cnβ −

Cnβ̇b

2∥−→wa∥

)
−→er (10)

where b is the span of the kite, Cnβ and Cnβ̇ are the aerodynamic coefficients in yaw,
linearly dependent on the drift angle and on the yaw rotation speed, such that :

Cnβ = cββ and Cnβ̇ = cβ̇ψ̇b (11)

5



II – 3 Controller

The primary objective of the controller is to force the kite to follow a predefined
trajectory, and then to be able to replicate paths observed during experiments or numerical
studies. The targeted trajectory is a list of points that the kite covers until the end of
the simulation. In order to control the kite trajectory, a proportional–integral–derivative
controller (PID) is used.

In order to characterize the controller, two angles are defined (see figure 2a) :
— γ, the angle between −→eΘ, the polar unit vector, and the kite velocity −→vk
— γref , the angle between −→eΘ and the vector going from the kite position to the next

targeted point, projected on the tangential plane to the flight sphere at the kite
position (

−→
epc )

(a) Input error

(b) Points target validation

Figure 2 – Controller input and validation point

The input of the PID, noted ξ is defined as the difference between γref and γ

ξ = γref − γ, (12)

while its output is the roll speed of the kite ϕ̇b such that :

ϕ̇b = Kpξ +Ki

∫ t

0

ξdt+Kdξ̇ (13)

in which Kp, Ki, and Kd are respectively the proportional, integral and derivative coeffi-
cients of the controller.

To smoothen the kite’s trajectory, a validation radius for the target point is employed,
as illustrated in figure 2b. This feature enables the controller to target a point further
ahead, facilitating better anticipation of curves and minimising abrupt changes in correc-
tions when the controller shifts to a new target point. This validation radius, Rv, is defined
by a time parameter, TR, which is multiply by the kite velocity to obtain a distance. The
formula is provided in equation (14).

Rv = ∥−→vk∥ × TR (14)
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III – Results

Before using this model, it was verified, by using assumptions and data from Houska
and Diehl [6], that their results were accurately reproduced with a precision within 0.8%
in terms of trajectory and traction force.

III – 1 Presentation of results

For the simulations, a kite of 5 m2 is employed. Detailed specifications are provided
in table 1. The parameters for the controller and computational settings are presented
in tables 2 and 3. The simulations are done along a lemniscate trajectory defined by the
equation (15) which specifies the coordinates of point i. This equation depends on the
small radius R1 and the large radius R2, the position of the point in the target list i, and
the total number of points in the targeted path denoted NB :

Φi =
R1

2

cos( 2πi
NB )

sin( 2πi
NB )

2
+1

Θi =
R2

2

cos( 2πi
NB ) sin(

2πi
NB )

0.3534
(
sin( 2πi

NB )
2
+1

) (15)

This trajectory is travelled in the both directions to be able to do a comparison between
up and down-loop. Additionally, the simulations are done, first, with the targeted path
centred in the flight window and, second, with an offset on the side in order to study the
impact of this offset on the traction force. The same control parameters are employed for
all the simulations, and provided in table 2.

To obtain reliable results, a substantial number of periods are computed, and a phase-
averaging method is employed to extract the data, as done by Behrel et al [1]. Otherwise,
for a single loop, discrepencies can be observed partly due to the corrections applied to
follow the trajectories. Consequently, the overall evolution of the traction force over a
period is less discernible.

The figure 3 and 4 show the evolution of the traction force over the period, along with
the kite’s trajectory. This traction is compared with the results obtained using the model
proposed by Houska and Diehl [6].

For a centred path, in both directions (down-loop figure in 3a and up-loop in figure
3b), the maximums of traction are reached during the straight segments of the trajectory
(between 40% and 60% of the period and 90% to 10% of the period). Conversely, the
minimums of tractions occurs during the kite’s turns (between 10 and 40%, and from 60%
to 90% of the period). During these turns, it is possible to see that the down-loop loses
more traction force compared to the up-loop. However, the down-loop exhibits a local
maximum at the midpoint of its turn (at 25% of the period), which is not observed in the
up-loop.

Compared to the results obtained from the model by Houska and Diehl [6], the curves
exhibit similar trends. However, in figure 3a our model shows a larger traction amplitude.
For the up-loop (figure 3b), the variation in traction remains comparable, though a shift
to lower values is observed.

In the case of the off-centre path (figure 4), our model indicates that the maximum
traction occurs during the straight segments (from 90% to 10% of the period and between
45% and 60% of the period), while the minimum is observed at the end of the more off-
centre loop (at 40% of the period). Additionally, it is possible to see that the traction is
slightly higher during the straight segment when the kite moves from the centre to the
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Table 1 – Kite parameters estimated from [1]

Kite mass 2.45 kg
Cable’s mass 0.5 kg
Yaw inertia 2.175 kgm2

Area 5 m2

Span 3 m
Volume 0.097 m3

CL0 0.9856 -
GLA0 0.2041 -
kGLA 0.0422 s
kl -0.3718 s rad−1

cβ 0.26 -
cβ̇ 0.014 -
g 9.81 ms−2

Air density 1.23 kgm−3

Cable length 100 m
Cable drag coefficient 0.4 -

Cable diameter 0.004 m
Reference wind speed (v0) 7 ms−1

h0 40 m
hr 0.1 m

ship velocity 0 ms−1

height of attached point 1 m
δw 0 rad

Table 2 – Control parameters

Limit roll speed 0.4 rad s−1

Kp 3 -
Ki 0.1 -
Kd 1.1 -
TR 0.4 s

Number of targeted points 500 -
R1 40 ◦

R2 15 ◦

Target centre co-latitude 70 ◦

Table 3 – Computation parameters

Time steps 0.001 s
Total simulation time 1000 s

Beginning removed part 200 s
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(a) Down-loop

(b) Up-loop

Figure 3 – Traction in cable for centred paths

edge of the flight window (from 90% to 10% of the period)compared to the segment where
it travels from the edge to the centre (from 45% to 65% of the period).

Compared to the model of Houska and Diehl [6], the traction follows the same trend
during the first 50% of the period, which corresponds to the most off-centre segment of the
trajectory. A difference is observed in the most centre half of the trajectory (between 50%
and 100% of the period). In our model, there is a local minimum during the more centred
loop (between 60% and 90% of the period), whereas the traction force in the Houska
and Diehl model [6] continues to increase until it reaches its maximum. Furthermore,
as observed in the centred path, our model shows larger variations in traction with the
down-loop direction compared to the Houska and Diehl model [6], for the segment where
both models show a similar trend (from 0% to 50% of the period). In contrast, for the
up-loop, the variations in traction between the two models are comparable during this
segment.

To be able to compare the performance over each trajectory, the maximum, minimum,
mean traction force and its amplitude are given in the table 4.
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(a) Down-loop

(b) Up-loop

Figure 4 – Traction in cable for off-centre paths

Table 4 – Traction study

Mean (kN) Loss (%) Max (kN) Min (kN) Amplitude (kN) Amplitude (%)
Centred down-loop 1.848 - 2.465 1.424 1.041 56.33
Centred up-loop 1.809 -2.110 2.232 1.545 0.687 37.98

Off-centre down-loop 1.679 - 2.280 1.036 1.244 74.09
Off-centre up-loop 1.632 -2.799 2.185 1.055 1.130 69.24

The table 4 also shows that the centred path offer 10% more traction than the off-
centre path in down-loop and 11% in up-loop.

During the generation of results, it was observed that the dimensions of the target
path significantly influence the controller’s ability to maintain the kite on the intended
trajectory. This sensitivity is partly attributed to the length of the straight segments.
During these periods, the kite may oscillate around the target trajectory due to the PID
controller. Depending on the "wave length" of these oscillations, relative to the length
of the straight line, the kite may struggle to turn favourably at the enter of the curve.
Consequently, this necessitates adjustments to the PID parameters each time the size of
the figure is modified.
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III – 2 Results analysis

The results presented in table 4 indicate that the down-loop trajectory generates
greater traction force compared to the up-loop trajectory. However, this increased force is
accompanied by a higher variation, which may contribute to greater fatigue in the cables,
kite structure and winches. Additionally, as anticipated, the centred path yields more
traction than the off-centre trajectory.

The additions of aerodynamic coefficients as functions of yaw rate and the yaw equa-
tion results in a lower traction force compared to the model of Houska and Diehl[6] (figure
3 and 4). This discrepancy primarily arises from the definition of the aerodynamic coeffi-
cients. As the kite rotates through a significant portion of the trajectory, its aerodynamic
performance deteriorates, leading to decreased traction efficiency. This loss of performance
is particularly evident on the off-centre path (figure 4) during the more centre loop. While
the model by Houska and Diehl [6] predicts a maximum traction force, our model indicates
a local minimum instead.

The simulations conducted in both directions for a lemniscate trajectory illustrate the
impact of gravity on control. It is observed that for both centred and off-centre paths, the
down-loop shows a greater traction amplitude than the up-loop, which contrasts with the
findings of Houska and Diehl [6]. Additionally, during turns, the traction force is greater
for the up-loop than for the down-loop along the centred path. These observations are
not consistent with the expectation that gravity would assist the kite in increasing its
velocity during turns, thereby generating a larger traction force. This discrepancy may
come from the controller requiring larger corrective actions to maintain the trajectory in
the down-loop, in order to counteract the gravitational force at the end of the turns.

On our result for off-centre path (figure 4) it is possible to see that the kite generates
more traction force when moving from the centre to the edge of the flight window compared
to the reverse direction. This occurs because the real wind and the wind induced by the
kite’s velocity are more aligned in this direction. In contrast, during the other straight
segment, these two wind components are partially opposed. As a result, the apparent
wind is significantly stronger in one direction, which affects the aerodynamic force, so the
resulting traction force.

IV – Discussion

The results presented here are derived from a simplified model of the kite that accounts
for only three of the six degrees of freedom applicable to a rigid body. Furthermore, the
model does not incorporate structural deformation. A simplified representation is adopted
that considers only the influence of yaw rate on the lift and drag coefficients (eq.(5)).
For the aerodynamic moment, only the drift angle and the yaw rate are taking into
account (eq.(10)). Consequently, these limitations mean that not all aspects of the wing’s
aerodynamic behaviour are accurately represented, such as variations in angle of attack
for example. Further studies taking into account influences from other parameters could
improve the model reliability.

As the straight segments offer a maximums of traction and the minimums occur during
turns, the ratio between the size of the loops and the size of the straight segment could
be investigate to obtained the optimal size for an eight figure. Additionally, the controller
should aim to minimise corrections to prevent a decrease in aerodynamic performance.
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V – Conclusion

Using a simplified 3 degrees of freedom model that takes into account the kite yaw
equation, it has been determined that the down-loop trajectory generates a greater trac-
tion force compared to the up-loop trajectory. However, this gain is accompanied by a
greater variability in traction force, which may contribute to increase fatigue in the cables
and structure. This study also highlights the importance of having an effective control-
ler that can follow the trajectory without requiring manual adjustments in response to
changes in the problem parameters. Furthermore, to optimise traction force, it is essential
for the controller to minimise corrections, thereby improving overall traction performance.
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