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Summary

Absorption plays a crucial role in wave control, with broad applications ranging from
noise reduction in acoustics to coastal protection and energy harvesting from water waves.
Numerous methodologies have been proposed, often relying on resonant mechanisms. A
particularly effective approach for achieving perfect absorption is through critical cou-
pling, wherein resonance leakages balance with inherent system losses, resulting in peak
absorption.

Understanding and engineering devices using critical coupling involves examining the
complex frequency plane. By strategically manipulating resonator geometries, it is possi-
ble to shift the reflection coefficient zeros in the complex frequency plane to the real axis,
thereby achieving perfect absorption.

In the context of water waves, this strategy can be applied to create perfect absorbers
using subwavelength resonators. This entails aligning radiation damping with the intrinsic
viscous damping of the resonators. In this work, we have developed and implemented
a microstructured vertical wall made of resonant cavities capable of achieving perfect
absorption. The microstructured wall allows for almost full absorption of the wake pattern
generated by a moving source, such as a boat. This system appears promising for coastal
protection, particularly in areas with lateral confinement, offering practical applications
in river engineering.
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I – Introduction

Absorption remains a crucial focus within the field of wave manipulation, with applica-
tions that span noise mitigation in acoustics, coastal protection, and energy harvesting
using water waves. Various approaches have been developed, predominantly leveraging
resonant mechanisms [1–11]. Perfect absorption has been also achieved via critical cou-
pling in an acoustic waveguide [12], where broadband absorption was accomplished using
a subwavelength scatterer constructed from a viscoelastic porous plate.

The concept of critical coupling can be analyzed and applied using the complex fre-
quency plane [13]. Critical coupling, which involves balancing the resonance leakages
with inherent losses of the system, produces a peak in absorption. By carefully adjusting
the geometric parameters of resonators, the reflection coefficient’s zeros in the complex
frequency plane can be shifted onto the real axis, thus achieving perfect absorption.

In the context of water waves, this principle has been applied to design a perfect
absorber comprising a subwavelength resonator. In [14], the experiments were conducted
within a waveguide featuring an off-centered open cavity at one end, where nonlinear wave
interactions and resonator geometry were used to equate radiation damping with viscous
losses.

This paper aims to extend this concept to mitigate the reflection of boat wakes gen-
erated near shorelines. Such a system holds significant potential for coastal protection,
particularly in scenarios involving lateral confinement, making it directly applicable to
river engineering [15–18]. Boat wakes are characterized by their iconic V-shape produced
when a vessel travels at a constant speed in a straight line. They have been widely studied
since Kelvin’s foundational work on the wake angle [19]. Recent research on boat wakes
continues to explore factors like water depth and boat geometry [20–23].

Figure 1: (a) Boat wake in the Avon Gorge, England [24]. (b) Groynes in Elbe river,
Germany (Google Earth).

It is noteworthy that structures similar to those proposed for boat wake absorption
are already utilized for erosion control, such as groynes, which are angled to deflect flow
rather than absorb wave energy [25–27]. Figure 1 illustrates groynes constructed along
the Elbe River in Germany. While visually resembling our experimental setup, these
structures aim to manage sediment movement rather than wave absorption. Their use
in rivers, however, demonstrates the feasibility of implementing such systems in practical
scenarios.

In this work, we begin by introducing the effective boundary condition that replaces
the solid wall, demonstrating that this configuration facilitates the existence of surface
modes characterized by evanescent waves propagating away from the microstructured
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wall. Next, we analyze the oblique incidence of a plane wave on this wall, comparing
reflection coefficients obtained through a multimodal method with those derived from
the effective boundary condition. By employing the complex frequency plane, we iden-
tify a resonance within this setup that has the potential to create a perfectly absorbing
boundary. Therefore, we propose an experimental design in which a boat moves parallel
to a microstructured wall (grating), allowing for the absorption of the boat wake and
significantly diminishing its reflection on the walls.

II – Microstructured wall (grating)

II – 1 Effective boundary condition

Figure 2: Geometry of the periodic grating of periodicity a, filling ratio b and length L.

We begin our analysis by examining the modes within a closed cavity, one of whose
walls is constructed from a periodic arrangement of rectangular inclusions, characterized
by a periodicity a, a width b, and a length L, as depicted in Figure 2. For this study,
we assume a time-harmonic dependence represented by e−iωt. The governing equation for
the surface elevation field η(x, y) is described by the Helmholtz equation

(∆ + k2)η(x, y) = 0, (1)

where k denotes the wavenumber, and we apply Neumann boundary conditions at the
cavity walls (∂nη = 0). If the periodicity a of the grating is significantly smaller than
the wavelength λ = 2π/k, we assume that each cavity supports only a single propagating
mode, leading to the mono-modal condition

∂2η

∂y2
+ k2η = 0, (2)

The solution to this equation can be expressed as η = A cos[k(y − L)], which fulfills the
Neumann boundary condition at y = L. At the lower interface of the cavity, defined as
y = 0 (denoted as y = 0−), we have

∂η

∂y
= k tan(kL)η. (3)

Next, we enforce the continuity conditions for the field and its derivative at the interface
y = 0
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η(0−) = η(0+), a
∂η

∂y
(0−) = b

∂η

∂y
(0+). (4)

Combining equations (3) and (4) at y = 0−, we derive:

∂η

∂y
=

b

a
k tan(kL)η, (5)

where we define γ = b
a
k tan(kL). We then seek a general solution η(x, y) in the region

where y < 0 (external to the microstructure) and propose the form η(x, y) = eiqxf(y)
which must satisfy the Helmholtz equation. This leads us to

f ′′ + (k2 − q2)f = 0. (6)

In this work, we focus on the absorption characteristics of the microstructure, particularly
interested in modes that remain localized near the grating, referred to as surface modes
(evanescent waves). These modes can be expressed as f(y) = eγy, which decay for y < 0
with a wavenumber γ. Substituting this form into equation (6) gives us k2 − q2 = −γ2.
Thus, the dispersion relation can be expressed as [11]

q2 =

[(
b

a
tan(kL)

)2

+ 1

]
k2. (7)

The primary focus of this investigation is the interaction between a boat wake and the
grating. In practical experiments, we must consider energy losses; incorporating a small
imaginary component into the wave vector implies that these surface modes become less
apparent. Given that the theoretical framework suggests the existence of surface modes,
we will now turn our attention to a related problem: the incidence of a plane wave on a
microstructured wall.

II – 2 Plane wave incidence on a microstructured wall

II – 2.1 Reflection coefficient

We now examine the incidence of a plane wave on a microstructured wall, depicted in
Figure 3a, and address the problem using the multimodal method [10, 11]. Assuming
time-harmonic dependence e−iωt, we consider a plane wave with wavenumber k and angle
θ incident on an infinite grating with periodicity a. Each cavity has a length L and
width b. The system is governed by the Helmholtz equation (1) with Neumann boundary
conditions on the wall surface, ∂nη = 0, and Floquet periodic boundary conditions in the
x-direction. We define the region outside the grating as Region 1 and inside the grating
as Region 2. The solution in these regions can be expressed as

η(1)(x, y) = eikyyϕ
(1)
0 (x) +

+∞∑
n=−∞

Rne
−iαnyϕ(1)

n (x)

η(2)(x, y) =
+∞∑
n=0

An cos (ζn(y − L))ϕ(2)
n (x)

(8)

where the transverse functions ϕ
(1)
n (x) = 1√

a
eiβnx and ϕ

(2)
n (x) =

√
2−δn0

b
cos (γnx), satisfy

the periodic and Neumann boundary conditions in Regions 1 and 2, respectively. The
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wavenumbers are defined as βn = kx + 2πn/a, γn = nπ/b, αn =
√

k2 − β2
n, and ζn =√

k2 − γ2
n, with kx = k sin θ and ky = k cos θ as the projections of the incident wave

vector.

Figure 3: (a) Geometry of the infinite periodic grating with periodicity a, filling ratio
b, and cavity length L. (b) Equivalent geometry with an effective boundary condition
substituting the microstructured wall. A plane wave with wavenumber k is incident
obliquely at an angle θ, and the specular reflection of the fundamental mode, characterized
by reflection coefficient R, is indicated.

Figure 4: Numerical result: Real part of the field η(x, y) produced by the incidence of a
plane wave with ka = 9π/10 and θ = 35◦ on a grating characterized by b/a = 0.5 and
L/a = 1.

The reflection coefficient Rn and the complex amplitude An represent the modes in
region 2. The quantities kx and ky correspond to the projections of the incident wavenum-
ber on the x and y axes, respectively: kx = k sin θ and ky = k cos θ. It is important to

note that in region 1, the transverse functions ϕ
(1)
n are a-periodic, while in region 2, the

transverse functions ϕ
(2)
n satisfy Neumann boundary conditions at the lateral walls.

Next, we examine the scenario depicted in Figure 3b, where the grating is replaced by
an effective boundary condition as defined by Eq. (5). Focusing on specular reflection, we
define the reflection coefficient for the fundamental mode as R = R0. The corresponding
solution is

η(x, y) = ei(kxx+kyy) +Rei(kxx−kyy). (9)

By applying the effective boundary condition (5), we obtain

∂η

∂y

∣∣∣∣
y=0

= ikye
ikxx − ikyReikxx = γ(eikxx +Reikxx), (10)
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which allows for the determination of the reflection coefficient

R =
iky − γ

iky + γ
. (11)

For real values of k, it follows that |R| = 1, in accordance with energy conservation.
Consequently, to analyze the system’s behavior, we focus on the phase of the complex
reflection coefficient R. Figure 5 compares the phase of R obtained using the modal
method with the phase derived from Eq. (11), for varying ratios of b/a and different
cavity depths L. We vary the frequency within the range ka ∈ [0, π], where ka = π
represents the lowest cutoff frequency of the system (corresponding to θ = π/2).

Figure 5: Theoretical and numerical results: Phase of the reflection coefficient as a func-
tion of ka, for different ratios b/a and L/a. The solid lines correspond to the multimodal
method calculation, while the dashed lines are obtained from the reflection coefficient
given by Eq. (11), calculated using the effective boundary condition in Eq. (5).

As expected, the two curves show slight discrepancies due to the approximations used
in the effective boundary condition (dashed lines). Additionally, a resonance appears,
becoming more pronounced as the b/a ratio decreases and the cavity depth L increases,
particularly for long, narrow cavities.

II – 2.2 Resonance of the grating

We begin by considering Eq. (11), which describes the reflection coefficient in the complex
frequency plane and can be rewritten as

R =
cot(kL) + i b

a cos θ

cot(kL)− i b
a cos θ

. (12)

The poles and zeros are located at cot(kL)− i b
a cos θ

= 0 and cot(kL) + i b
a cos θ

= 0, respec-
tively. These values are complex conjugates: the poles have a negative imaginary part
and the zeros a positive imaginary part. This behavior is typical for complex resonance
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frequencies [28] and is independent of the mono-mode approximation used for the wave
propagation towards infinity. Near the pole-zero pair, the reflection coefficient can be
approximated as

R =
kL− π

2
− i b

a cos θ

kL− π
2
+ i b

a cos θ

. (13)

For a pole KR = kR − iαR, where kR = π/2 is the real part of the resonance frequency
and αR = b

a cos θ
, the reflection coefficient near the resonance frequency is given by

R = eiφ
k − kR − iαR

k − kR + iαR

. (14)

Here, φ represents a slowly varying phase that captures the gradual variation of R in
contrast to the rapid fluctuations near the resonance. For real values of k, φ is real, and
energy conservation is satisfied, i.e., |R| = 1.

To obtain the complex resonance frequency, we consider a plane wave incidence at an
angle θ = 35◦ and use the multimodal method to calculate the reflection coefficient R0.
We then fit the data using Eq. (14), with initial guesses for the real and imaginary parts
of the pole. The results are shown in Figure 6a, for a configuration with L/a = 1 and
b/a = 0.2. Additionally, the phase of R calculated using the effective boundary condition
is compared with the fit from Eq. (14). This procedure is repeated for different cavity
widths (varying b/a), and the resulting data is plotted in Figure 6b.

Figure 6: (a) Phase of the reflection coefficient R as a function of ka for L/a = 1 and b/a =
0.2. The blue line represents the reflection coefficient calculated using the multimodal
method, while the red line shows the result from Eq. (12). Dashed lines indicate the
fit near the resonance frequency using Eq. (14). (b) Complex resonance frequencies for
various b/a configurations with fixed L/a = 1. The parameters kR, αR, and φ are obtained
by fitting R with Eq. (14). Dots indicate values from fitting the multimodal method,
squares represent the fit from Eq. (12), and dashed lines correspond to the zero-pole
approximation from Eq. (13), with kR = π/2, αR = b

a cos θ
, and φ = 0. A plane wave

incidence at θ = 35◦ is assumed.

We observe that the real part of the resonance frequency remains largely constant
around kR ≈ π/2, corresponding to the λ/4 resonance, for both the modal and effective
boundary condition methods. However, the imaginary part exhibits significant variation,
becoming more leaky as the cavity width increases. This suggests that adjusting the
cavity width allows tuning of wave leakage. The phase φ is approximately constant but
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slowly varies with b/a, which helps explain the discrepancy between the phase of R and
its fit in Figure 6a. As expected, the effective boundary condition results are closer to
those predicted by Eq. (13).

To account for intrinsic losses, we introduce a viscous damping term αv by shifting
the imaginary part of the resonance frequency as k → k + iαv. The reflection coefficient
becomes

R = eiφ
k − kR − i(αR − αv)

k − kR + i(αR + αv)
. (15)

Setting αv = αR results in perfect absorption, as the poles and zeros shift downwards
in the imaginary axis, as shown in Figure 7. This corresponds to the zeros crossing the real
axis, indicating perfect absorption. This approach is similar to the one used in [14], where
a waveguide with a resonator at the end has been used, combining quarter-wavelength and
Helmholtz resonator mechanisms. In contrast, we analyze the interaction of an oblique
plane wave with an infinite periodic medium made of rectangular cavities acting as an
absorbing wall.

Figure 7: Representation of 20 log(|R|) in the complex frequency plane. (a) Reflection
coefficient computed using the multimodal method. (b) Reflection coefficient derived from
Eq. (12). (c) Contour plot showing the position of the zero and pole of R obtained with
the effective boundary condition (Eq. (12)), illustrating the shift in the pole and zero
positions when losses are introduced into the system.

III – Experimental setup

Experiments were conducted in a water tank with dimensions 1.77m × 0.60m, explor-
ing water depths within the range h ∈ [0.02, 0.09]m. The Fourier Transform Profilom-
etry (FTP) method, was utilized to measure free surface deformations using a high-
speed camera (Photron FASTCAM Mini WX100) and a video projector (EPSON EH-
TW9200W), both aligned in a parallel-axis setup. The camera and projector were po-
sitioned D = 0.45m apart and located at a height Lp = 1.88m above the water level,
achieving a spatial resolution of 0.28 mm/px with a frame rate of 125 fps.

The wake was generated by a partially submerged spherical object (referred to as
the ”boat”) with a 4.2 cm diameter. At the water surface, the object’s cross-section
diameter was reduced to 3.7 cm. Placed 17.5 cm from the wall, the boat was mounted
on a motorized platform that moved at a uniform speed U , controlled by an Arduino-
driven stepper motor. This setup minimized shadowing effects, especially in the region of
interest, as shown in Figure 8.
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To characterize the wake, we introduced the Froude number, Fr = U/
√
gh, where g

represents gravitational acceleration and h is the water depth. The dispersion relation for
a moving source is expressed as

Ω(k) =
√

g|k| tanh(|k|h)−U · k (16)

where k is the wavenumber vector with magnitude k = |k|.

Figure 8: (left) Schematic of the experimental setup. The boat, a partially submerged
sphere, is attached to a mobile platform near a microstructured grating wall. The platform
moves along a rail at a constant speed U , controlled by an Arduino and stepper motor.
The camera and projector, separated by distance D and positioned at height Lp above
the water, capture free surface deformations using Fourier Transform Profilometry (FTP).
(right) Schematic of the microstructured wall (grating) of periodicity a, width b and length
L.

IV – Experimental results

The wavefield data were recorded over time and then averaged with respect to the boat’s
motion to enhance the resolution of the wake pattern. However, quantifying the reflec-
tion of the boat wake is not straightforward. The reflection coefficient is defined for
monochromatic waves, but in the case of a boat wake, multiple wavelengths are present.
Additionally, the boat’s movement changes its position continuously, meaning the waves
reaching the wall in a fixed reference frame differ from those moving away. The boat’s
motion further complicates the analysis by preventing a temporal Fourier transform to
isolate a single frequency. Hence, we attempt to quantify the reflection of the boat wake
using 2D spatial Fourier transform (2D FFT) which is applied to the section of the wave-
field near the wall. The resulting spectra are presented in Figure 9. These spectra reveal
a dominant wavenumber k, which varies with the boat’s speed, represented by different
Fr values.

In Figure 9, we compare the wavefield amplitude profiles for two Froude numbers,
Fr = 0.54 (high absorption) and Fr = 0.87 (low absorption), with both the wall and
grating configurations. The dashed lines represent the theoretical dispersion relation from
Eq. 16. Profiles of the amplitude along the dispersion relation were then used to compute
a reflection coefficient R = η̃grating/η̃wall, comparing the grating’s response to that of the
wall.

For each Froude number, the reflection coefficient R is plotted as a function of the
dominant wavenumber k, as illustrated in Figure 10. This analysis indicates that the
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Figure 9: Wavefields with corresponding spectra for two Froude numbers: (a) Fr = 0.54
(high absorption) and (b) Fr = 0.87 (low absorption), showing the amplitude distribution
in both wall and grating configurations. Dashed lines on top of the 2D FFT spatial spectra
denote the theoretical dispersion relation as described in Eq. 16. The spectra illustrate
the dominant wavenumber regions for each configuration, which vary according to the
boat’s velocity.

Figure 10: Reflection coefficient R = η̃grating/η̃wall as a function of Froude number (Fr)
and wavenumber magnitude k. Dashed lines indicate a tentative fit based on Eq. 15,
demonstrating a good match with experimental data, albeit not directly derived from
this relation.
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absorption properties of the grating depend on both Fr and k, with higher absorption
observed at lower reflection coefficient values. The experimental data was fitted tentatively
using Eq. 15 (dashed lines). Although this fitting is not an exact application of Eq. 15, it
demonstrates a reasonable match with the experimental results.

V – Conclusion

This study demonstrates the effectiveness of a microstructured grating wall in absorbing
the wake generated by a moving source, such as a boat. Using a combination of theoretical,
numerical, and experimental methods, we analyzed wave interactions with the grating
wall, focusing on effective boundary conditions, modal analysis, and resonance effects.

An effective boundary condition was established to model the grating as a medium
supporting surface modes, which confine wave energy near the wall. This provided ini-
tial insights, while a more detailed multimodal analysis enabled calculation of reflection
coefficients for different grating configurations. We observed that certain configurations
promote resonance, enhancing absorption through critical coupling by aligning poles and
zeros in the complex frequency plane.

Experimentally, varying the Froude number allowed us to control the boat wake and
measure the resulting wavefields. Results showed that the grating’s reflection coefficient,
defined as R = η̃grating/η̃wall, decreases around the designed frequency and nearby frequen-
cies, indicating higher absorption under these conditions. The absorption is achieved by
fine-tuning the cavity leakages with viscous losses, resulting in broader, less pronounced
resonances, which potentially enables absorption over a range of wavelengths.

In summary, our microstructured wall effectively absorbs wave energy at the designed
frequency and neighboring frequencies, suggesting applications in coastal protection by
reducing wave reflections in confined environments. Ongoing work optimizes the grating
design to enhance absorption across an even broader range of conditions, expanding its
potential for practical wave management.

References

[1] Ben Wilks, Fabien Montiel, and Sarah Wakes. Rainbow reflection and broadband energy
absorption of water waves by graded arrays of vertical barriers. Journal of Fluid Mechanics,
941:A26, 2022.

[2] K Budar and Johannes Falnes. A resonant point absorber of ocean-wave power. Nature,
256(5517):478–479, 1975.

[3] DV Evans. A theory for wave-power absorption by oscillating bodies. Journal of Fluid
Mechanics, 77(1):1–25, 1976.

[4] Sichao Qu and Ping Sheng. Microwave and acoustic absorption metamaterials. Physical
Review Applied, 17(4):047001, 2022.

[5] Nathan I Landy, Soji Sajuyigbe, Jack J Mock, David R Smith, and Willie J Padilla. Perfect
metamaterial absorber. Physical Review Letters, 100(20):207402, 2008.

[6] David V Evans and Richard Porter. Wave energy extraction by coupled resonant absorbers.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 370(1959):315–344, 2012.
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[10] Samantha Kucher, A Koźluk, Philippe Petitjeans, Agnès Maurel, and Vincent Pagneux.
Backscattering reduction in a sharply bent water wave channel. Physical Review B,
108(21):214311, 2023.

[11] Samantha Kucher. Control of water waves propagation by micro-architectured materials.
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[13] Vicent Romero-Garćıa, Georgios Theocharis, Olivier Richoux, and Vincent Pagneux. Use of
complex frequency plane to design broadband and sub-wavelength absorbers. The Journal
of the Acoustical Society of America, 139(6):3395–3403, 2016.

[14] Eduardo Monsalve, Agnes Maurel, Philippe Petitjeans, and Vincent Pagneux. Perfect
absorption of water waves by linear or nonlinear critical coupling. Applied Physics Letters,
114(1), 2019.

[15] Zhuo Sun, Zhonglong Chen, Hongtao Hu, and Jianfeng Zheng. Ship interaction in narrow
water channels: A two-lane cellular automata approach. Physica A: Statistical Mechanics
and its Applications, 431:46–51, 2015.

[16] Clément Caplier, Germain Rousseaux, Damien Calluaud, and Laurent David. Effects of
finite water depth and lateral confinement on ships wakes and resistance. Journal of Hy-
drodynamics, 32:582–590, 2020.

[17] Claire DeMarco Muscat-Fenech, Tonio Sant, Vito Vasilis Zheku, Diego Villa, and Michele
Martelli. A review of ship-to-ship interactions in calm waters. Journal of Marine Science
and Engineering, 10(12):1856, 2022.
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