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Summary

Real-time wave forecasting is a significant technical and scientific challenge. While
most of the literature is dedicated to the wave forecasting step per-se, i.e. free-surface
elevation (FSE) prediction, this study examines how to use those FSE predictions to infer
future excitation forces onto a structure at sea. Assuming linear, Gaussian wave theory,
we employ a probabilistic approach to derive the mean-square excitation estimation error,
given a choice of “input” FSE locations and time interval. Hence, adequate input FSE
locations and time durations can be explored, depending on the sea state. Two geometries
are studied: a cylinder, and a Wigley hull. Results show that virtually perfect estimates
can be obtained from a finite number of input points: from 3 (for the cylinder) to 20-30
(for the ship in relatively short wave lengths), which suggests a connection between the
number of necessary points and the complexity of the geometry.

Résumé

La prédiction de vagues en temps réel est un défi scientifique et technique considérable.
Alors que la majeure partie de la littérature est consacrée à prédire les vagues elles-mêmes,
c’est-à-dire l’élévation de surface libre (ESL), ce travail examine comment utiliser ces
prédictions d’ESL pour calculer les futurs efforts hydrodynamiques sur une structure en
mer. Sous l’hypothèses de vagues linéaires et Gaussiennes, nous utilisons une approche
probabiliste pour calculer l’erreur quadratique moyenne d’estimation des efforts, étant
donné un choix d’emplacements et d’intervalle de temps pour les signaux d’ESL d’entrée.
Deux géométries sont étudiées : un cylindre et une coque de Wigley. Les résultats mon-
trent qu’une estimation quasi-parfaite peut être obtenue à partir d’un nombre fini de
points d’entrée: entre 3 (pour le cylindre) et 20-30 (pour le navire dans des vagues rel-
ativement courtes), ce qui suggère un lien entre le nombre de points nécessaires et la
complexité de la géométrie.
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Figure 1: Excitation force prediction in multidirectional waves

I – Introduction

Real-time wave forecasting (RTWF), more often termed deterministic or phase-resolved
forecasting, consists in predicting ocean wave-induced motion or forces, from a few sec-
onds to several minutes in advance, using measurements updated in real time. RTWF
could show substantial benefits in many coastal and marine applications, by allowing the
implementation of predictive control strategies for various tasks such as motion compen-
sation, stabilization and energy harvesting, or by facilitating decision-making in critical
offshore operations.

An operational RTWF system typically comprises the following three elements: a
sensing system which collects free-surface elevation (FSE) measurements in real time at
some distance from the location of interest, a wave prediction method, i.e. a mathematical
and numerical procedure which encapsulates the laws of wave propagation to predict the
FSE at, or near the location of interest, and finally a vessel dynamical model which relates
FSE forecasts to the future vessel or platform motion or forces. The vast majority of the
RTWF literature is dedicated to the rather generic wave prediction step; however, for
RTWF to be employed in an actual operational scenario, it is essential to extend the
forecast to vessel or platform forces and motion, which this work is concerned with.

Assuming that the ship’s motion can be described by the Cummins equation, or a
non-linear extension thereof [8], calculating wave excitation forces and moments from
the predicted FSE is an appropriate first step. In a unidirectional wave field, those can
be easily obtained through a convolution of the predicted FSE with the excitation force
convolution kernel. In a multidirectional wave field, however (Fig. 1), such a simple
approach cannot be applied, since the FSE-to-excitation linear relation is, in general,
direction-dependent, and predicting the FSE at a single point does not allow a directional
decomposition of the predicted incident waves, as clearly articulated by Kim et al [4].

Some wave prediction approaches, because they are based on a decomposition of the
wave field into discrete frequency and directional components, inherently lend themselves
to a relatively direct calculation of future excitation forces [4]. But we have been exploring
a different route to wave prediction, based on a probabilistic wave model [5, 6], which
optimally considers the stochastic nature of ocean waves – among other benefits – but
does not provide a decomposition of the wave field into directional components. Therefore,
there remains to bridge the gap between the FSE predictions and future wave excitation
and induced motion, in our probabilistic prediction framework.

More generally, we consider the problem of inferring excitation forces from a discrete

2



number of FSE input points, near the centre of the structure water plane area (WPA).
Such a problem arises for ship motion prediction, as discussed above, but also in wave
tank experiments, where it could be desirable to obtain theoretical excitation forces from
wave elevation probe measurements, carried out without the structure, as in [4].

Section II outlines how the probabilistic approach of [5] is extended to infer excitation
force values from FSE input points. Section III describes the two numerical examples used
in this work: a simplified toy-case model, that is, a cylinder of radius 1 m and draft 0.5
m - one of the test-cases of the WAMIT BEM solver1 - and a representative ship model,
with a classical Wigley hull. Results are presented in Sections IV and V for two- and
three-dimensional wave fields, respectively. Finally, the main conclusions and avenues for
future work are outlined in Section VI.

II – Assumptions and methods

As illustrated in Figure 1, it is assumed that a wave prediction system is implemented,
which allows the free-surface elevation (FSE) to be predicted, with arbitrary accuracy,
at any desired points in the vicinity of the ship WPA centre. The predicted FSE is
assumed to be the incident FSE, not the total FSE field – which would also include
diffracted and radiated waves. Such an assumption is reasonable e.g. if we consider
that the predicted FSE is calculated from measurements in the far-field, where the ship
disturbance is negligible. In this study, only the calculation of excitation forces and
moments is considered (not the motion), since it would be the common first step in ship
motion forecasting, regardless of other modeling assumptions on the ship dynamics.

Assuming linear hydrodynamic theory, the FSE-to-excitation relation is linear, de-
scribed by a direction- and frequency-dependent transfer function Hη→e(ω, θ) where ω is
the angular frequency and θ is the wave heading. We also note as hη→e(τ, θ) the excitation
kernel corresponding to Hη→e(ω, θ). In unidirectional waves with heading θ, as mentioned
in the introduction, the excitation force can be trivially calculated from the convolution
of hη→e(τ, θ) and η(t) at the WPA centre, which is possible because, in that case, e is
entirely determined from only one, measurable input signal.

However, in a random, directional wave field, such an approach is not possible, because
the directional components, that together constitute η, cannot be decomposed exactly.
Therefore, throughout this work, the excitation signal is merely estimated from FSE
signals taken at a finite number of locations, referred to as input FSE points. More
precisely, the input FSE is taken over a time interval [Tin;T in] to infer e(τ = 0), where
τ = 0 is the present time.

Assuming a Gaussian random wave field [9], with known spectrum, it is possible to
calculate the optimal excitation estimate, depending on the chosen input FSE locations,
Tin, T in, and the wave spectrum, following the probabilistic approach outlined in [10] and
[5]. Although the latter two references are only concerned with predicting the FSE from
other FSE measurements, here we extend the approach to accommodate any variables,
related to the FSE through a linear transfer function H(ω, θ), such as the excitation force.

Indeed, consider any two variables vi and vj, related to the FSE through transfer
functions Hi(ω, θ) and Hj(ω, θ), and taken at two locations xi, xj and two instants τi, τj
relative to present time. Then, the covariance < vi(xi, τi)vj(xj, τj) > can be calculated
using the Wiener-Khinchine relation [7], applied to the cross-spectrum Sij of variables vi

1https://www.wamit.com/
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and vj:

< vi(xi, τi)vj(xj, τj) >=
1

2π

∞∫
0

2π∫
θ=0

Sij(ω, θ)e
j[k(θ,ω).(xj−xi)−ω(τj−τi)]dθdω (1)

where the cross-spectrum Sij is given by:

Sij(ω, θ) = Sηη(ω, θ)H
∗
i (ω, θ)Hj(ω, θ) (2)

Now taking regularly sampled input FSE at a number of input locations xin,1...xin,N ,
a vector of input, “observed” variables is built as:

Vo = [v1 · · ·vN ]
T (3)

with
vn = [η(xin,n,Tin), ...η(xin,n, T in)]

T , n = 1...N (4)

The vector of output, “predicted” variables reduces to the excitation force at t = 0, i.e.:

Vp = [em1(0, 0) · · · emM
(0, 0)]T (5)

where m1 · · ·mM are the modes of motion considered, and the WPA centre is assumed to
be in x = 0.

Each element of the covariance matrices Σoo =< VoV
T
o >, Σop =< VoV

T
p > and

Σpp =< VpV
T
p > is filled using Eq. (1), and the optimal estimate of Vp given available

observations Vo is then given by:

µp|o(t) = PVo, with P = ΣpoΣ
†
oo (6)

where the † (dagger) superscript denotes the inverse – if Σoo is full-rank – or a pseudo-
inverse – if Σoo is not full-rank, which indicates that the information in Zo(t) is statistically
redundant, as shown in [5].

The corresponding prediction error, E := PVo − Vp, is zero-mean, Gaussian, with
covariance Σp|o calculated as follows:

Σp|o = Σpp − ΣpoΣ
†
ooΣop (7)

In the rest of this study, the estimated (“predicted”) variable is the excitation force
(in one ore more modes of motion) at present time τ = 0. The observations are the FSE
at a set of input FSE points. The FSE input point locations, the input time interval and
the sampling time are all parameters which can be studied. Using the above procedure,
the mean square error in excitation estimation can be derived from the chosen input FSE
configuration.

III – Numerical examples

Two devices, illustrated in Figure 2, are considered as numerical case studies: a simplified
toy case model, that is, a small cylinder of radius 1 m and draft 0.5 m, and a representative
ship model, with a classical Wigley hull, see e.g. [3]. The main dimensions of each of
the two geometries are summarized in Table 1. Excitation force transfer functions were
calculated using WAMIT for the cylinder, and NEMOH for the Wigley hull.
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Figure 2: Two structure geometries: a circular cylinder and a Wigley hull.

Cylinder Wigley hull
Characteristic dimensions Radius R = 1 m Width W = 36.46 m

Draft H = 0.5 m Length L = 116 m
Draft H = 7.2 m

Convolution time Tc = 2.4 s Tc = 35 s
Sampling time ∆t = 0.06 s ∆t = 0.5 s

JONSWAP peak periods Tp = {1, 2, 4} s Tp = {6, 10, 14} s
Peak wave lengths λp = {1.56, 6.25, 25} m λp = {56, 156, 306} m

Table 1: Main dimensions of the cylinder and the Wigley hull, together with the range of
JONSWAP peak period parameters employed for each device.

For each of the two structures, the estimation of excitation forces is studied in three
representative JONSWAP wave spectra [2], with significant wave height Hm0 = 1m and
peak wavelengths both shorter and larger than the structure characteristic length, as
documented in Table 1. The spectrum peak enhancement factor is set to γ = 1. The esti-
mation accuracy is quantified through the normalised mean square error (NMSE), which
represents the fraction of excitation signal energy which is not successfully estimated.
Therefore, results are independent on the significant wave height.

Considering the convolution kernel hη→e(τ) for a specific mode of motion, one de-
termines the minimum time T such that ∀τ with |τ | > T , h2

η→e(τ) < 1
100

max
τ∈R

h2
η→e(τ).

Taking the maximum of those convolution times among all modes of motions provides
the value Tc documented in Table 1. Ultimately, 2Tc provides an appropriate time scale
for the input FSE time interval. Finally, the input FSE is sampled at a time step, also
shown in the table, that is small with respect to both the peak wave length and Tc.

IV – Two-dimensional analysis

IV – 1 Uni-directional waves

In a unidirectional wave field, inferring wave excitation from one FSE input location is
almost trivial, with or without using the present statistical framework, as discussed in
the introduction. If the FSE input location is at the centre of the WPA, then it suffices
to perform the convolution of the FSE input with the excitation kernel. If the FSE input
location is at some location x, up-wave or down-wave with respect to the WPA centre,
then one should consider the kernel of a composite transfer function Hηx→η0(ω)Hη→e(ω),
where Hηx→η0(ω) = e−ik(ω)x relates the FSE in x to the FSE in 0.

Alternatively, we can apply the statistical framework of Section II, to explore the effect
of FSE input length and location onto excitation reconstruction errors, noting that, if a
long enough input FSE length is taken (typically, in the order of 2Tc), then the statistical
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Figure 3: Optimal input FSE time intervals in unidirectional waves for the cylinder,
depending on the FSE input location (normalised by the cylinder diameter). Tp = 2 s.

approach should yield results identical to the convolution approach. One reason to explore
different locations for the input FSE is the non-causality of the excitation kernel [1], which
induces a loss in the effective prediction horizon - with respect to the input FSE prediction
horizon. By choosing an up-wave input FSE location, the relation between input FSE
and excitation can be made causal.

Thus, a number of up-wave FSE input locations are considered, and an optimal input
time window is determined, following these three criteria:

• The excitation reconstruction NMSE should be lower than 1%;

• The time window should be as short as possible;

• Among time windows that satisfy the NMSE criterion and have identical length,
then the most causal one are chosen.

Results are exemplified for the cylinder in Fig. 3 (left graph) for the pitch degree of
freedom, with Tp = 2s. They confirm that, by shifting the input FSE location up-wave,
the FSE-to-excitation relation is made causal.

However, those benefits are mostly apparent. Indeed, it can reasonably be assumed
that the achievable FSE prediction horizon TH , at the WPA centre, is ultimately governed
by the wave sensor range Rsensor, following the relation TH ≈ Rsensor/cg,p, where cg,p is
the peak wave group velocity. As a consequence, the FSE at an up-wave location x < 0
has a shorter prediction horizon TH ≈ (Rsensor + x)/cg,p. Thus, while gaining causality
by shifting the input FSE up-wave, prediction horizon is lost for the input FSE. After
correcting for the latter effect (Fig. 3, right-hand-side graphs), we can see that it is, in
fact, difficult to avoid the loss of some prediction horizon. Therefore, in the rest of this
work, only FSE input points in the vicinity of the WPA centre will be considered.

IV – 2 Bidirectional waves

Before addressing the three-dimensional wave field, where waves come from multiple direc-
tions at the same time, we consider a hypothetical two-dimensional scenario, where waves
propagate both backwards and forwards. More precisely, the total wave field is made of
two contra-propagating, independent random wave fields, which can be mathematically
expressed as follows:

η(x, t) = η+(x, t) + η−(x, t) (8)
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Figure 4: Input FSE configuration in bi-directional waves.

Figure 5: Estimation NMSE for the cylinder, depending on the input point spacing and
time interval, with Tp = 1s.

where both fields η+ and η− are written as Fourier-Stieltjes integrals [9]:
η+(x, t) =

∞∫
ω=0

cos (k(ω)x− ωt+ ϕ+(ω))
√

S(ω)dω

η−(x, t) =
∞∫

ω=0

cos(−k(ω)x− ωt+ ϕ−(ω))
√

S(ω)dω
(9)

and ϕ+ and ϕ− are random functions of ω, uniformly distributed in [0; 2π[, and such that
ϕ+ and ϕ− at all frequencies are statistically independent from each other.

The excitation forces induced by positively and negatively propagating waves are
identical for symmetric modes of motion, in particular heave, but they are reversed
for anti-symmetric modes of motion, namely surge and pitch. In mathematical terms,
Hη+→ei(ω) = Hη−→ei(ω) for i = 3, while Hη+→ei(ω) = −Hη−→ei(ω) for i = 1 or i = 5. In
that situation, the estimation problem becomes undetermined if only one FSE input point
is used, since η cannot be decomposed into its forward and backward components. There-
fore, at least two measurement points are necessary, as sketched in Figure 4. Besides,
we simplify the analysis by considering a symmetric time window only, and we investi-
gate how the input duration Tin and point-to-point distance ∆X influence the estimation
NMSE.

IV – 2.1 Cylinder

Sample NMSE results are shown in Fig. 5 for the cylinder with Tp = 1s. From such
NMSE maps, it is easy to build the diagrams of Fig. 6, which show possible pairs of
symmetrically-arranged pairs of input FSE points, together with the corresponding time
interval, which allows for an estimation NMSE lower than 1% in all modes of motion. The
results of Fig. 6 show that the two input points should be chosen close to each other, all
the more so in shorter wave lengths (Fig. 6a). When the point-to-point spacing increases
beyond a short range, the necessary input time eventually increases very rapidly and no
reasonable time interval can be found, which satisfies the NMSE criterion.
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Figure 6: Bi-directional waves: Input FSE time windows to obtain less than 1% NMSE
for the cylinder, with pairs of input FSE locations placed symmetrically with respect to
the origin.

Figure 7: Wigley hull in bi-directional wave fields, for surge, heave and pitch (left) and
for sway and roll (right).

IV – 2.2 Wigley hull

For the Wigley hull, surge, heave and pitch, on the one hand, and sway and roll, on the
other hand, are treated differently, as illustrated in Figure 7. From the results of Fig. 8,
similar conclusions to the cylinder case can be drawn: The two input FSE points should
be placed relatively close to each other. Overall, it is interesting to observe that only
two input FSE locations are sufficient to resolve the directional ambiguity, and allow for
virtually perfect excitation estimates.

V – Three-dimensional wave field

In three dimensions, in a similar manner to the two contra-propagating wave trains of
the previous section, an isotropic wave field is considered, where waves propagate without
any preferred direction, as illustrated in Fig. 9a. That is expressed mathematically as
S(ω, θ) = 1

2π
Sω(ω), where Sω(ω) is the direction-integrated spectrum. Considering such

an isotropic wave field, although not physically realistic, has several benefits:

• The task of excitation estimation is made as difficult as possible since directional
ambiguity is enhanced. Therefore, the accuracy obtained in this hypothetical sce-
nario does not risk to be overly optimistic. In fact, the FSE input configurations
obtained in this way should work even better in realistic directional seas, without
the need to adapt to a specific directional distribution.

• The analysis is simplified, since modeling assumptions such as the mean wave di-
rection and directional spreading do not need to be taken into account.

Based on the two-dimensional results of Figures 6 and 8, some informed preliminary
decisions can be made. First, we set the input time interval to [−Tc;Tc], which should be
a conservative choice for all modes of motion. Second, a number of FSE input points are
arranged along circles of radius Rcyl/10 (for the cylinder) and W/10 (for the ship), which,
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Figure 8: Bi-directional waves: Input FSE time windows to obtain less than 1% NMSE
for the Wigley hull, with pairs of input FSE locations placed symmetrically with respect
to the origin.

(a) Isotropic distribution. (b) Mitsuyasu distribution, smax = 25.

Figure 9: Wigley hull in three-dimensional JONSWAP sea states with Tp = 6 s.
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ỹ

x̃

ỹ
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Figure 10: Circular input FSE arrangements for No = 1...6.

according to Figs. 6 and 8, should be a relevant distance. The first 6 of those circular
layouts are illustrated in Fig. 10.

V – 1 Cylinder

For the cylinder, Figs. 11a, 11c and 11e show how the NMSE varies with the number
of input FSE points. For heave, only one input point is necessary to obtain accurate
estimates, since that mode of motion is insensitive to wave direction due to the hull
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(d) Ship, Tp = 10s
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Figure 11: Normalised mean square error accuracy of excitation force estimation, for the
cylinder and the Wigley hull, for circular input point arrangements with radius 0.1Rcyl

for the cylinder, and 0.1Wship for the ship hull.

axisymmetry. As few as three input points are necessary to obtain accurate estimates in
all five modes of motion, regardless of the spectrum considered.

V – 2 Vessel

The striking results, obtained with the cylinder, unfortunately do not seem to extend
to the Wigley hull case, as can be appreciated in Figs. 11b, 11d and 11f. In general,
the estimation task seems more difficult in shorter waves (Figs. 11b and 11d), where
the NMSE does decrease as the number of inputs No increases, but the NMSE does
not generally approach zero, even for large numbers (20-30) of input locations. Another
notable feature of those results is the fact that the NMSE seems to evolve in sudden drops
at certain values of No, rather than in gradual decrease.

Since the circular arrangement and spacing value, suggested by the two-dimensional
analysis, do not seem able to provide accurate excitation estimates in all sea states, several
other types of input point arrangements (squares, rectangles, etc.) were considered, mostly
through a trial-and-error process, rather than rigorous optimization. Only one of those
possibilities is illustrated in the following. The main idea is to use as input the FSE
at discrete points within a circle with a chosen radius, while ensuring a homogeneous
density of input points. This can be approximately achieved by using “sunflower seed”
arrangements2, illustrated in Figure 12.

Tuning the “sunflower” radius to 0.7 times the hull width, NMSE results are shown
in Figure 13. This time, a large enough number of input FSE points allows a virtually
perfect excitation force estimate, in all sea states considered and all modes of motion:
between approximately 5 (Tp = 14 s) and 20 (Tp = 6 s). Finally, in the worst-case

2See e.g. https://demonstrations.wolfram.com/SunflowerSeedArrangements/ and [11]
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(a) Ship, Tp = 6s, isotropic waves.
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(b) Ship, Tp = 6s, directional waves.

0 5 10 15 20 25

No

0

0.5

1

N
M
S
E

surge

pitch

0 5 10 15 20 25

No

0

0.5

1

N
M
S
E

sway

roll

0 5 10 15 20 25

No

0

0.5

1

N
M
S
E

heave

(c) Ship, Tp = 10s, isotropic waves.
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(d) Ship, Tp = 14s, isotropic waves.

Figure 13: Normalised mean square error accuracy of excitation force estimation, for the
Wigley hull, for “sunflower seed” input point arrangements with radius 0.7Wship. In fig...
Mitsuyasu spreading function with smax = 25.

peak period parameter Tp = 6 s, Fig. 13b shows the results obtained when the isotropic
wave energy distribution is replaced with a Mitsuyasu spreading function with smax = 25
(illustrated in Fig. 9b), thus highlighting that realistic directional distributions should be
more favorable to the excitation estimation task, compared to our isotropic distribution.

VI – Conclusion

This work does not bring a general and definitive answer to the question initially posed,
i.e. that of the number and locations of input FSE measurement locations, necessary to
infer the wave excitation forces onto a structure. Yet, a number of trends can be observed.

In a two-dimensional setup with two contra-propagating wave fields, two input points
are enough to resolve the wave directional ambiguity, and thus to obtain a virtually perfect
excitation force estimation. Those two points should be placed next to each other, i.e. at
a distance significantly shorter than the wave peak wave length (∆X ≈ 0.1λp). The latter
result suggests that using spatial derivatives of the free-surface elevation, as additional
inputs to the excitation estimation, could be an interesting avenue for future work.

In a three-dimensional wave field, results seem contrasted, depending on the geometry
of the structure considered. In an axisymmetric structure such as the cylinder considered
here, as few as three input points, arranged circularly around the WPA centre, suffice to
obtain a virtually perfect excitation force calculation – and this encouraging result holds
in the hypothetical, worst-case scenario of an isotropic wave field where waves propagate
without any preferred direction. The circle radius should be, like in the 2D case, in the
order of a tenth of a peak wave length - or smaller.

However, in a more complex geometry, such as the Wigley ship hull considered in
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this work, inferring excitation forces in three-dimensional waves can be challenging, and
requires a comparatively large number (approximately 20) of input points, for accurate
estimates in sea states with short wave lengths. In contrast, longer wave lengths seem
to lend themselves better to excitation estimation, necessitating fewer input points. The
connection between the geometry complexity and the number of necessary input points,
which this work highlights, deserves further investigation.
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[3] I. J. Journé. Experiments and calculations on four Wigley hullforms. Delft University,
909, 1992.

[4] I.-C. Kim, G. Ducrozet, V. Leroy, F. Bonnefoy, Y. Perignon, and S. Delacroix. Nu-
merical and experimental investigation on deterministic prediction of ocean surface
wave and wave excitation force. Applied Ocean Research, 142:103834, 2024.
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