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Résumé

La tenue à la mer linéaire est le plus souvent calculée par des logiciels employant la
méthode des éléments aux frontières. Des problèmes de précision sont parfois rencontrés
par les utilisateurs de ces logiciels, en particulier les logiciels open-sources. Ce document
est une vue d’ensemble des approximations numériques qui y sont faites et identifie les
causes de certains de ces problèmes de précision. Les résultats présentés ont été obtenus
avec le logiciel open-source Capytaine, ce document étant aussi une contribution à sa
documentation théorique.

Summary

Linear sea-keeping analysis is usually computed with the help with software using the
Boundary Element Method (BEM). Accuracy issues have been noticed by users of these
software, especially users of open-source sofware. This paper is an overview of the different
numerical approximation done in the implementation of these software and identifies the
cause of some of the accuracy issues. The presented results have been computed with
the open-source software Capytaine, this paper being also a contribution to its theory
documentation.
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I – Introduction

Linear potential flow models have been a critical part of the design of offshore floating
devices for decades. Several commercial software, as well as a few free and open-source
software, are available for the computation of hydrodynamical coefficients. The most
widely used open-source software include Nemoh [6], HAMS [18] and Capytaine [3]. How-
ever, the accuracy and performance of these open-source software is often below their
commercial counterparts. Since 2022, with the support of NREL and Sandia National
Laboratories [17], the efficiency of the Boundary Element Method (BEM) solver Capy-
taine has been investigated and several improvements have been tested and implemented.
Some results have been presented in [4] and [5].

The present paper gives an overview of the different approximations and transforma-
tions of the mathematical problem that are done to solve a first-order radiation-diffraction
problem. A complete theory manual would contain at least three different “direct” meth-
ods and four different “higher-order” method, hence the need to clearly structure its
content. This paper is thus structured in five sections corresponding to the five modeli-
sation layers affecting the accuracy of the software. At each step, some alternative are
reviewed and the effect on the final result is discussed. Although the examples focuses on
the implementation in Capytaine, the same theory applies broadly to all BEM solver of
this kind.

II – The five layers of BEM sea-keeping codes

Five steps are necessary to derive the typical algorithm of a BEM sea-keeping code:

1. The potential flow model is expressed as a Partial Differential Equation (PDE).
2. The PDE is reformulated as a Boundary Integral Equation (BIE) problem.
3. The BIE is discretized, typically using a colocation scheme.
4. The colocation scheme requires the integration of the Green function on each panel.
5. The numerical integration requires the evaluation of an efficient approximation of

the Green function.

The five following sections detail each of these layers.

II – 1 Linear potential flow model

The first approximation, with which most users are already familiar, is the linear potential
flow model for water waves. This model is documented in a lot of textbooks, including
the reference works [20] and [21].

Airy wave model Assuming an incompressible inviscous and irrotational fluid, the
velocity field u in the fluid can be represented as the gradient of an abstract scalar potential
field φ, that is u = ∇φ. This potential is solution of a Laplace Partial Differential Equation
(PDE) in the fluid, completed by boundary conditions, most notably on the free surface
ΓFS. Assuming small wave amplitude, the problem is treated as a small perturbation
around the rest position. The fluid domain Ω and the free surface ΓFS are assumed to
the fixed in time and only the values of the fields in the fixed domain are evolving in
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time. The small wave amplitude hypothesis also allows to linearize the wave boundary
condition on the free surface:

g
∂φ

∂x3

+
∂2φ

∂t2
= 0, on ΓFS (1)

where g is the gravity acceleration and x3 is the vertical component of the position x.
Since the whole problem is linear in a fixed domain, it can be solved in the frequency

domain. When using the same convention as in Capytaine and Nemoh, the complex-
valued frequency-domain phasor φ̂ is defined as

φ(x, t) = Re
(
φ̂(x)e−iωt

)
(2)

where ω is the angular frequency of interest, leading to the following Laplace equation

∇2φ̂ = 0, in Ω (3)

and the following boundary condition on the fixed free surface at z = 0:

g
∂φ̂

∂x3

− ω2φ̂ = 0, on ΓFS. (4)

Without a floating body, a solution to these equations is the Airy wave of amplitude a in
direction β, given in infinite depth as

φ̂Airy = −ai
g

ω
exp(kx3) exp(ik(x1 cos β + x2 sin β)), (5)

where k is the wavenumber k = g
ω2 .

Floating body hull For the wave-structre interaction problem, we denote by Γ the
immersed hull of the floating body, which is supposed to be fixed like the rest of the
domain. Integrating the pressure of the Airy wave field (5) on the hull gives the Froude-
Krylov force. A more accurate account of the force on the body is obtained by solving (3)
and (4) with a suitable Neumann boundary conditions on Γ.

The normal velocity of the fluid imposed as boundary condition on the hull depends
on the kind of problem being solved. For radiation problems, the velocity is the velocity
of the body for the degree of freedom causing the radiation. For diffraction problems, the
velocity is the opposite of the velocity of the (5) in order to correct the Froude-Krylov
force and get a total zero velocity on the hull. The problem is completed with a decay
boundary condition at infinity.

Possible modifications of the recipe at this level:

• For the sake of brevity, finite depth is not discussed in this paper.

• The modelisation of approximate forward speed is done by modifying some of
the equations at the level of description of the problem. Details can be found in [10],
which was the base of the current implementation in Capytaine.

• The mean drift force and QTFs are the excitation force on the body computed
with a second order approximation of the motion and free surface elevation. An
open-source implementation is found in the latest version of Nemoh [15].

3



II – 2 Boundary integral equations

The partial differential equation defined above could be solved by a large variety of
methods, including the Finite Difference Method as in [1]. The most common method in
the literature is to rewrite the volumic problem as a Boundary Integral Equation (BIE)
problem [11, 23].

For all points x on the ship hull Γ, the direct BIE (or “potential” formulation) reads

φ̂(x)

2
+

∫∫
Γ

φ̂(ξ) ∇2G(x, ξ) · n(ξ) dξ =

∫∫
Γ

∂φ̂

∂n
(ξ) G(x, ξ) dξ (6)

where G is the fundamental solution (or Green function) satisfying

∇2
1G(x, ξ) = δ(ξ − x).

with the boundary conditions on the free surface, on the sea bottom and at infinity.
We denote by ∇1 the derivative of the two-variable function G with respect to its first
variable and ∇2 the derivative with respect to its second variables (also denoted ∇x and
∇ξ in the literature). The direct BIE is applied notably in the reference commercial code
WAMIT [16] and the open-source solver HAMS [18].

Nemoh [6] and Capytaine are using by default the indirect BIE (or “source” formula-
tion), which reads

φ̂(x) =

∫∫
Γ

σ(ξ)G(x, ξ) dξ
∂φ̂

∂n
(x) =

σ(x)

2
+

∫∫
Γ

σ(ξ) ∇1G(x, ξ) · n(x) dξ (7)

for all points x on the ship hull Γ, where G is the same Green function and σ is an
intermediate variable without clear physical interpretation.

Although they are mathematically equivalent, these two BIE can exhibit very different
behaviors in some cases. Sheng et al. [25] compared the results of WAMIT [16], HAMS [18]
and Nemoh [6] on a few test cases. Nemoh was found to have inconsistent results on two
test cases: the floating cylinder with thin damping plate and the floating cylinder with
overlapping panels in mesh. By implementing both the direct and indirect boundary
integral equation in Capytaine [5], the cause of the inconsistency has been identified:
Nemoh is using the indirect boundary integral equation, while WAMIT and HAMS are
using the direct boundary integral equation. Capytaine’s results1 for the overlapping mesh
problem are displayed on Figure 1. The thin-plate case is also discussed more in depth
in [5].

Despite the higher accuracy of the direct method, the indirect method has been kept
as default in Capytaine, because it allows some post-processing such as reconstruction of
the free surface elevation or reconstruction of the velocity field. The latter is necessary
for forward speed calculation, thus forward speed is only available in Capytaine with the
indirect solver.

1These results have been computed with the development version of Capytaine 2.2.1, as earlier versions
of the direct boundary integral equations had a bug when handling symmetric meshes.
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Figure 1: Heave-heave added mass of a floating vertical cylinder (radius 10m and draft
10m) for several wave periods, computed with the overlapping mesh of [25] (1536 panels)
and a regular mesh of similar accuracy (1680 panels), using the two boundary integral
equations implemented in Capytaine (direct and indirect).

Possible modifications of the recipe at this level:

• One of the consequences of the use of Boundary Integral Equation is the appearence
of irregular frequencies, that is frequencies at which the BIE problem is ill-
posed, perturbing the results in the neighborhood of these frequencies [14]. Several
modifications of the BIE can be used to avoid this issue. The most common one
(recently implemented in Capytaine) is the lid-based method involving an extension
of the domain boundary on the free surface inside the hull [12]. Another method is
the Burton-Miller method involving the second-kind boundary integral equations,
which are yet other variants of the boundary integral equations presented above.

• The modelling of thin plates with dipoles elements is another possible modification
of the BIE. The method is implemented notably in WAMIT [16] but no open-source
implementation is available.

II – 3 Discretization

As already hinted in the previous section, the numerical resolution of the Boundary Inte-
gral Equations involves their discretization on a mesh of the immersed hull Γ.

The most common approach (used e.g. in WAMIT low-order solver, HAMS, Nemoh
and Capytaine) is the discretization with a colocation scheme. The value of each fields
(e.g. φ̂(x)) is assumed to be constant on each panel of the mesh, equal to the value at
the center of the panel, and the solver manipulates a vector (still denoted e.g. φ̂) with as
many components as the number of panels:

φ̂i = φ̂(xi),

(
∂φ̂

∂n

)
i

=
∂φ̂

∂n
(xi), . . .
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where xi is the center of panell Γi.

With this discretization, the direct BIE is rewritten as a linear algebra problem

Dφ̂ = S
∂φ̂

∂n
(8)

where
Sij =

∫∫
Γj

G(xi, ξ) dξ, Dij =
δij
2

+

∫∫
Γj

∇2G(xi, ξ) · n(ξ) dξ (9)

where Γj is the jth panel of the mesh and xi is the center of the ith panel.

The indirect BIE is discretized as

φ̂ = Sσ,
∂φ̂

∂n
= Kσ, (10)

where
Sij =

∫∫
Γj

G(xi, ξ) dξ, Kij =
δij
2

+

∫∫
Γj

∇1G(xi, ξ) · n(x) dξ. (11)

The resolution of the problem involves the evaluation of the coefficient of the matrices
S and D (resp. S and K for the indirect BIE) and the resolution of a linear system. This
linear system is of size npanels ×npanels. This quadratic cost in CPU and RAM is the main
contrainst in the performance of BEM solvers.

Possible modifications of the recipe at this level:

• Higher order discretizations of the BIE can be used. Application to linear
potential flow are few (see e.g. [26]) and no open-source implementation is available
to our knowledge.

• The symmetries of the problem are causing regularities in the shape of the ma-
trices, which can be exploited to reduce the computation time [2]. Most notably,
the symmetries with respect to vertical symmetry planes are implemented in most
software.

• Since the size of the matrices is one of the main bottleneck for BEM solver, ap-
proximation techniques have been developped. The most famous is the Fast
Multipole method (FMM), implemented for linear potential flow in [7]. In Capy-
taine, a prototype of H-matrices [4] has been tested.

II – 4 Integration over a panel

In this section and the next, the approximations are more technical and usually not
encountered by most users. In Capytaine, they occur in the Fortran core of the software.
In the previous section, the problem has been discretized using matrices containing the
integrals of the Green function over faces of the mesh. Let us now discuss how to evaluate
these integrals.

Firstly, let us notice that the (infinite depth) Green function is usually written by iso-
lating the singular 1

|x−ξ| -terms, usually refered to as Rankine terms. The singular Rankine

6



terms are integrated separately from the remaining terms. The integral of the Rankine
terms is done with exact expressions of the integral of 1/|x − ξ| and its derivative on
a quadrilateral [8]. The integral of the remaining terms is done by numerical quadra-
tures [24], with often only a single point (e.g. in Capytaine and HAMS). Note that other
singularities might appears in the derivatives of G, but are not discussed here for the sake
of brevity.

Although most software agree on the above methodology, they differ in the way they
extract the singularities (see also [28]):

• In WAMIT, HAMS and others, the Green function is written as:

−4πG(x, ξ) =
1

|x− ξ|
+

1

|x− s(ξ)|
+ k G+(kr, kz) (12)

where s denotes the symmetry with respect to the free surface, that is s(ξ) =
(ξ1, ξ2,−ξ3) assuming the free surface is at x3 = 0, and r and z are defined as

r =
√

(x1 − ξ1)2 + (x2 − ξ2)2, z = x3 + ξ3.

• In Nemoh and former versions of Capytaine, the Green function is written as:

−4πG(x, ξ) =
1

|x− ξ|
− 1

|x− s(ξ)|
+ k G−(kr, kz) (13)

The former may be refered to as low-frequency asymptotics because its singularities
corresponds to the Green function in the infinite frequency (or 0-wavenumber) limit:

k G+(kr, kz) →k→0 0, (14a)

and conversely the latter may be refered to as high-frequency asymptotics because

k G−(kr, kz) →k→∞ 0. (14b)

Both variants are now implemented in Capytaine. Since version 2.2, the default has
been changed from the high-frequency variant to the low-frequency variant. While both
choices appear justified by the asymptotics (14), the low-frequency is more convenient
in practice. It is especially more accurate near the free surface2 where the accuracy of
the Green function is the most critical. On Figure 2, the added mass of a sphere almost
tangent to the free surface has been computed with both variants. Both variants converges
to the same solution (also found with WAMIT), but the low-frequency variant converges
much faster, due to its higher accuracy for horizontal panels near the free surface.

Possible modifications of the recipe at this level:

• Despite the extraction of the Rankine terms, the remaining term G+ is still singular
on the free surface.

G+(kr, kz) ∼kr,kz−→(0,0) −2 log
(√

k2r2 + k2z2 − kz
)
+ (γ − log(2))− 2πi (15)

2A hand-wavy explanation is that low-frequencies corresponds to long wavelengths, and in long wave-
lengths everything is near the free surface with respect to the wavelength.
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Figure 2: Added mass of floating sphere of radius 1m, tangent to the free surface (that
is its center is at x3 = 1.01m), depending on the angular frequency ω, computed with
different mesh discretizations between 100 and 10000 panels and with different imple-
mentations of the Green function. “Low-freq” refers to the integration with the Rankine
terms as in (12), while “high-freq” refers to (13).

Panels on the free surface require the integration of the singular logarithmic
term. An analytical expression, similar to the one mentionned above for the Rank-
ine term, is presented in [19]. In Capytaine, an approximate method has been
implemented for horizontal panels on the free surface (where x3 = 0): the inte-
gral of log(kr) on a quadrilateral panel is approximated as the integral of the same
function on a disk of same center and area than the original quadrilateral.∫∫

Γj

log(kr)dξ '
∫ 2π

0

∫ rj

0

log(kr)rdrdθ =
π

2
r2j
(
log(k2r2j )− 1

)
(16)

where rj is the radius of the disk of same area as Γj, that is πr2j = |Γj|.

• An higher-order quadrature (four points instead of one) is used in the latest
version of Nemoh [15]. From our experience, the increase in computation time
is not worth the gain in accuracy. A good compromise could be to increase the
quadrature order only on some faces, for instance near the free surface where the
Green function varies the most.

II – 5 Evaluation of the Green function

In the previous section, we started to present the expression of the Green function, but it
has not been fully expressed. Let us now discuss the computation of the remaining terms
G+ or G− for the infinite-depth Green function.

Recalling the following definition for the infinite-depth Green function

−4πG(x, ξ) =
1

|x− ξ|
− 1

|x− s(ξ)|
+ k G−(r̃, z̃)

with
r̃ = k

√
(x1 − ξ1)2 + (x2 − ξ2)2, z̃ = k(x3 + ξ3),
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then the wave term can be written in the following form (among others [28]):

G−(r̃, z̃) =
4

π
<

(∫ π/2

0

eζ(θ) (E1(ζ(θ)) + iπ)− 1

ζ(θ)
dθ

)
+ 4i<

(∫ π/2

0

eζ(θ) dθ

)
(17)

where ζ is defined as
ζ(θ) = z̃ + ir̃ cos θ,

and E1 is the exponential integral defined as

E1(ζ) =

∫ ∞

ζ

e−t

t
dt.

A similar expression can be derived for G+ and for its gradient (not discussed here, for
the sake of brevity).

The above expression is well-defined and can be easily computed numerically by dis-
cretizing the integral with respect to θ. An accurate evaluation of these integrals takes
10 µs to 100 µs. Given that the Green function typically needs to be evaluated millions of
times for each BEM resolutions, a faster approximation needs to be found. Many surro-
gate models have been presented in the literature [28]. Nemoh and Capytaine are using
the method proposed by G. Delhommeau [9]. Before the start of the resolution, a grid
of points of r̃ and z̃ is constructed and the value of the Green function and its deriva-
tive is evalutated at each point. Then, during the resolution, a second-order Lagrange
polynomial interpolation on a 3× 3 stencil is used to compute the Green function (taking
approximately 100 ns, that is 100 to 1000 times faster than the full evaluation).

The accuracy of the surrogate model is thus constrained by the density of the tabu-
lation. Earlier version of Capytaine used the same tabulation as in Nemoh 2, composed
of 328× 46 points. This appeared to be insufficient and lead to high error in some cases
(as in the case of Figure 4 below). In Nemoh 3 a denser tabulation has been used, while
in Capytaine it is now possible for the user to specify a custom density for the tabulation
(the default matches approximately the one of Nemoh 3). On Figure 3, the error intro-
duced by the tabulation is plotted as a function of r̃ and z̃. The gain from version 1.5 to
version 2.1 is due to the finer tabulation, while the difference between version 2.1 and 2.2
is due to the tabulation of the low-frequency variant of the Green function G+ instead of
the high-frequency variant G−. Tabulation of G+ is worse for large r̃ and z̃ (that is high
frequencies) but better for small r̃ and z̃ (that is low-frequency), as expected from (14).

Finally, Figure 4 presents the added mass of the DeepCWind floating offshore wind
turbine reference design [22] computed in Capytaine with several variant discussed in
this section and the previous one. The lower-resolution tabulation of previous version of
Capytaine (green curved labelled Legacy) lead to very noisy results, which are greatly
improved by the higher-resolution tabulation. Contrary to the test case of Figure 2, the
high-frequency Green function integration variant appears slightly more accurate here
than the low-frequency variant. However, this small high-frequency noise seems to us less
significant than the discrepancy of Figure 2.

Possible modifications of the recipe at this level:
• In the latest version of Nemoh [15], a higher-order polynomial interpolation

method is used (fifth order Lagrange interpolation). This has not been implemented
in Capytaine, where we prefer to investigate refinements of the tabulation that would
allow higher accuracy without the higher computational cost of the higher-order
polynomial interpolation.
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Figure 3: Error on the Green function introduced by different versions of the tabulation.
(Actually, all computations have been done with the development version of Capytaine
2.2.1, with parameters mimicking the implementation of previous versions.)
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Figure 4: Added mass of the DeepCWind, depending on the angular frequency ω, com-
puted with several variants of the implementation of the Green function. Legacy tabulation
refers to Capytaine 1.5 (and Nemoh 2) implementation while the new tabulation refers to
the tabulation of version 2.2, applied to the two variants of the Green function integration
discussed at Section II – 4.
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• A large number of other surrogate models are presented in [28]. While polynomial-
type models are the most common, some research works propose original methods
such as Differential-Equation-based models [27] or Machine-Learning-based mod-
els [13].

• The finite-depth version of the Green function deserves a long discussion, but is
not tackled here for the sake of brevity.

III – Conclusion

This paper is a walk through the numerical techniques used for the discretization of
linear potential flow problems with the Boundary Element Method. The end goal would
be to tune of the precision of each layer in order to optimize the computation time of
the solver for a given total precision. But, depending of the test case, the bottleneck
of accuracy may come from slightly different places and unexpected side-effect might
occur. By implementing several variants and allowing to test many combinations of solver
parameters, Capytaine will hopefully allow to better understand and optimize linear BEM
sea-keeping codes.
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