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Résumé

Dans ce travail, nous dérivons un nouveau modèle de vagues en utilisant un ansatz
pour le potentiel de vitesse inspiré de la théorie des eaux peu profondes. Le potentiel est
représenté par une série avec des coefficients fonctionnels inconnus qui dépendent de la
variable horizontale et du temps et des fonctions verticales (polynômes) qui correspon-
dent à celles qui apparaissent dans une expansion asymptotique. Nous montrons que les
équations dérivées ont une structure Hamiltonienne canonique non-locale en accord avec
la formulation Hamiltonienne du problème complet. Nous discutons de la relation avec
les modèles existants et fournissons quelques résultats numériques.

Summary

In this work, we derive a new water-wave model by using an ansatz for the velocity
potential inspired by shallow-water theory. The velocity potential is represented by a
series with unknown functional coefficients that dependent on the horizontal variable and
time and vertical functions (polynomials) that match the ones appearing in an asymptotic
expansion. We show that the derived equations have a canonical non-local Hamiltonian
structure in accordance with the Hamiltonian formulation of the full wate-wave problem.
We discuss the relation with existing models and provide some numerical results.
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I – Introduction

The majority of water wave models currently in use in oceanographic and coastal engi-
neering applications are based on asymptotic expansions or expansions around a plane
vertical level (e.g. the still water level). This approach leads to “simple” evolution equa-
tions defined only on the horizontal plane. Thus, the free-boundary character of the full
problem and its internal kinematics are simplified at the cost of limited range of applica-
bility. Since the early works of Boussinesq in the 1900s several models have been proposed
which are reviewed in [7, 18], for example. However, the need of improvement still exists
[26, 19].

A popular and extensively studied model based on an asymptotic expansion in terms
of the shallowness is provided by the Serre-Green-Naghdi (SGN) equations [21, 27] which
are two evolution partial differential equations (PDEs). The SGN equations have been
extensively studied and have led to several numerical schemes that can also treat breaking
and run-up [6, 14]. One of the difficulties in the numerical solution of the SGN equations
is that they involve the inversion of a linear operator that relates the evolving variables
[24, 13, 22].

A different class of models is obtained by using eigenfunction expansions [5, 34, 4] or
Chebyshev expansions [40] to exactly prescribe the vertical structure of the potential and
derive equations for the introduced unknown horizontal coefficients. These models have
the structure of the Zakharov-Craig-Sulem formulation [41, 10] where the Laplace equation
is replaced by a system of spatial PDEs on the horizontal plane whose dimension depends
on the order of truncation of the expansions. No smallness assumptions is needed a priory
for their derivation and their precision increases with the order of truncation. They can
treat very demanding cases, including breaking waves, if a sufficient number of terms (or
PDEs) is kept in their truncated version (typically 4-7) [33, 2, 31, 3, 36, 35, 37, 42].

Another approach is to use an appropriately constructed ansatz for the vertical struc-
ture of the potential. Isobe and Kakinuma (IK) [16, 17] used the vertical polynomials
in the Boussinesq-Rayleigh asymptotic expansion. This class of models has recently at-
tracted attention possibly due to their non-trivial mathematical structure [29, 15, 30,
9, 11]. A method for their numerical solution is proposed in [1]. Klopman et al. [20]
proposed different vertical polynomials or hyperbolic cosine functions that lead directly
to Hamiltonian model equations with their most recent version, involving a dispersion
improvement, showing very good properties [23].

In this work, we consider an ansatz for the velocity potential where the vertical struc-
ture is identified with the polynomials obtained by the asymptotic expansion of [21]. This
expansion is obtained directly in terms of free-surface quantities from the Dirichlet-to-
Neumann problem of the ZCS formulation. By invoking Luke’s variational pricniple for
the derivation of the model equations we directly obtain the equations in Hamiltonian
form where in the simplest non-trivial flat-bottom case the Laplace equation is approxi-
mated by a single elliptic PDE on the horizontal plane. The derivation does not require a
smallness assumption on the free surface and the resulting equations have at most second-
order spatial derivatives no matter the number of terms that are kept in the ansatz.

II – The water-wave problem

We consider the motion of water waves in a cartesian coordinate system OXz with X =
(x1, x2) and the vertical z-axis pointing upwards with z = 0 corresponding to still water
level. The fluid motion under the assumption of potential flow is described in terms of
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the velocity potential Φ = Φ(X, z, t) and the free surface elevation η = η(X, t) by the
following set of equations [38]

∆Φ = ∆Φ+ ∂2zΦ = 0, −h ≤ z ≤ η, (1a)

Nh·∇Φ = −∇h · ∇Φ− ∂zΦ = 0, z = −h, (1b)

∂tη −Nη·∇Φ = ∂tη +∇η · ∇Φ− ∂zΦ = 0, z = η, (1c)

∂tΦ +
1

2
(∇Φ)2 + gη = ∂tΦ +

1

2
(∇Φ)2 +

1

2
(∂zΦ)

2 + gη = 0, z = η, (1d)

where ∆ = ∂2x1 + ∂2x2 , ∇ = (∇, ∂z), ∇ = (∂x1 , ∂x2), Nη = (−∇η, 1) and Nh = (−∇h,−1)
and g is the acceleration of gravity. We also assume that h > 0, η+h > 0 and that η and
∇Φ vanish as |X| → ∞.

Luke [25] showed that the equations in (1) are obtained as the Euler-Lagrange (EL)
equations of the functional given by the space-time integral of the fluid pressure,

S(η,Φ) =
∫ ∫ ∫ η

−h

[
∂tΦ +

1

2
(∇Φ)2 +

1

2
(∂zΦ)

2 + gz

]
dz dX dt . (2)

The usefulness of Luke’s variational principle, δS = 0, stems from the fact that choosing
an ansatz for Φ in terms of new unknowns the variations will provide their governing
equations [5, 8, 33, 34].

Zakharov [41] introduced the free-surface velocity potential ψ = Φ(X, z, η(X, t)) and
showed that free-surface kinematic and dynamic conditions (1c) and (1d) can be re-written
in the Hamiltonian form,

∂tη = δψH,

∂tψ = −δηH,
H =

1

2

∫ ∫ η

−h
(∇Φ)2 dz dX +

1

2
g

∫
X

η2dX, (3)

where the Hamiltonian H equals to the total energy of the fluid with Φ satisfying the
internal kinematics equations (1a), (1b), and δη and δψ denote variational derivatives
with respect to η and ψ respectively. The canonical Hamiltonian structure (3) is non-
local in the sense that the Hamiltonian and the right hand sides of the evolution PDEs
contain the non-local Dirichlet-to-Neumann operator determined by the solution of the
Laplace equation in the entire domain, as opposed to a usual differential operator which
is defined locally at any point. Below we present a model derived from (2) that preserves
the Hamiltonian structure (3).

III – Variational derivation of a model equation

We exploit Luke’s variational principle in order to derive model equations based on vertical
series representations of the velocity potential in the form

Φa(X, z, t) =
∑
n

φn(X, t)Zn(z; η(X, t), h(X)) (4)

where Zn = Zn(z; η(X, t), h(X)) have a prescribed dependence on z, h and η and φn =
φn(X, t) are new unknown functions for which equations are to be derived. Motivated by
shallow-water theory [21], we choose the following representation of the velocity potential
in the case of flat bottom (∂xih = ∆h = 0, Nh = (0,−1))

Φa = ψ + φZ(z; η, h), with Z(z; η, h) =
1

2
(z − η)2 + (η + h) (z − η) . (5)
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and we extremize Luke’s functional for functions of the form (5). Substituting (5) into
Luke’s functional (2) and taking the variations with respect to the φ, ψ and η (see e.g.
[32, 33, 34]) we obtain three Euler-Lagrange equations. After some manipulations, these
equations can be written in the following form

∂tη +∇ ·
[
H∇ψ − 1

3
∇(H3φ)

]
= 0, (6a)

∂tψ + gη +
1

2
(∇ψ)2 −

(
3

2
|∇η|2 − 1

2

)
(Hφ)2 +

[
H∆ψ − 1

3
∆(H3φ)

]
Hφ = 0, (6b)

2

5
∆φ+

2

H
∇η · ∇φ+

(
∆H

H
+

(∇η)2

H2
− 1

H2

)
φ =

∆ψ

H2
. (6c)

Eqs. (6a), (6b) are two evolution PDEs on (η, ψ) and contain φ which is determined, at
every time t, in terms of (η, ψ) by solving the spatial elliptic PDE (6c).

IV – Hamiltonian structure

In order to establish the Hamiltonian structure of (6) we need to introduce a Hamiltonian
defined on (η, ψ). This is done be assuming that φ is expressed in terms of (η, ψ) by
solving (6c). We then may introduce the mapping ψ → ϕ [ η ]ψ := φ and write the
Hamiltonian as

Ha(η, ψ) =
1

2

∫ ∫ η

−h

(
∇(ψ + (ϕ[η]ψ)Z)

)2
dz dX +

1

2
g

∫
η2 dX (7)

Next, we must calculate the variational derivatives of Ha which in turn requires the
Fréchet derivatives of ϕ[η]ψ with respect to η and ψ for which explixit expressions are
not available, in general; they are defined in terms of the BVP (6c) and its derivative
with respect to η and are denoted by DψH(δψ) and DηH(δη) [11]. Using this fact, we
can show that

DψHa(η, ψ)(δψ) =

∫
∂ψHa δψ dX , DηHa(η, ψ)(δη) =

∫
∂ηHa δη dX . (8)

where ∂ψHa and ∂ηHa denote the variational derivatives that must be calculated. As an
example, we sketch here the derivation of the first equation in (8). For all δψ, we have

DψHa(η, ψ)(δψ) =

∫ ∫ η

−h

(
∇(ψ + (ϕ[η]ψ)Z)

)(
δψ + (ϕ[η]δψ)Z

)
dX

Using Green’s identity, the fact that [Z]η = 0 and (6c) we find the expression for δψHa.
The calculation of DηH(δη) can be performed along the same lines. Then, one can verify
that the system (6a), (6b) is equivalent with the Hamilton’s equations

∂tη = δψHa, (9)

∂tψ = −δηHa. (10)

V – Linear properties and relation with other models

In order to gain some insight on the physical properties of (6), we linearise around (η, ψ) =
(0, 0) and look for plane wave solutions in the form (η, ψ, φ) = (η̃, ψ̃, φ̃)ei(κx−ωt). Eq. (6c)
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can be solved for φ and we obtain from (6a) and (6b) the dispersion relation

ω2 = ghκ2
1 + 1

15
h2κ2

1 + 2
5
h2κ2

. (11)

Eq. (11) coincides with the dispersion relation of the parabolic model in [20] and of the
improved Green-Naghdi equations in [6, Section 2.6] with a = 6/5. It also coincides with
the dispersion relation of the Isobe-Kakinuma (IK) [29]. The IK model is obtained from
Luke’s variational principle by choosing

ΦIK(X, z, t) = ϕ0Z0 + ϕ1Z1 + · · ·+ ϕKZK , Zn = (z − h)2n, (12)

as an ansatz for Φ in the flat bottom case. For K = 1, the IK model is a system
of evolution PDEs in (η, ϕ0, ψ1) with an unusual structure which is not convenient for
numerical calculations. However, it can be transformed into a canonical Hamiltonian
system by introducing the free-surface velocity potential ψ = ϕ0 + H2ϕ1 [11]. By using
this relation and straightforward manipulations, it can be shown that this transformed
Hamiltonian system is actually equivalent to (6). It should be noted that the IK model is
a O(σ6) approximation of the water-wave system and this is expected to be true for (6).
Since these type of models are derived using ansatzes containing the vertical structure
of asymptotic expansions of the potential, it is natural to ask if they can be reduced to
the usual shallow-water models. Note that both models lead to the canonical form of the
non-linear shallow water equations if only the first term is kept in the invoked ansatzes.
We briefly sketch here a quick way to to simplify (6) by reducing its precision in σ. We
note that ψ scales as L

√
gh0, φ as L

√
gh0/h

2
0 by construction, and the first horizontal

derivatives are first order in σ. We can then obtain from (6) that φ = −∆ψ + O(σ2)
thus recovering the O(σ2)-asymptotic expansion of [21]. Using this result we can show
that (6a) and (6b) lead to the canonical equations written in terms of (η, ψ) appearing
in [39] and [28]. These equations lead to the usual SGN system in terms of η and the
vertically-integrated horizontal velocity.

VI – A numerical example

As a numerical application of (6), we numerically solve the initial value problem in a
periodic domain by using as initial conditions highly accurate solitary wave solutions of
the irrotational Euler equations obtained in [12]. At every time step we solve (6c) with a
spectral Fourier collocation method and (6a),(6b) with a Fourier pseudo-spectral method
in conjunction with the classical fourth-order Runge-Kutta method. We also compare
our results with the Fourier pseudo-spectral solution of the SGN equations [13]. The
horizontal domain is [−80, 80] and the depth is h = 1. The number of Fourier coefficients
and physical points is N = 1024 and the solitary wave is initially centered at x/h0 = −50.
We consider three increasing relative heights a/h0 = 0.15, 0.30 and 0.45 and let the waves
propagate for 80 times the depth with a time step dt = 0.5dx/c where c is the phase speed
of the exact solitary wave. We plot the results in figure 1. We see that (6) performs very
well stably propagating the exact solitary wave of the Euler equations. Slight differences
at the phase speed and the maximum height are visible at the scale of the figure for
a/h0 = 0.45. The SGN also maintain the solitary wave shape though differences are more
pronounced as a/h0 increases. It should be noted that the advancement in time of both
the SGN system and (6), requires the solution of a linear equation a every time-step but
detailed efficiency comparisons are out of the scope of this work.
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Figure 1: Propagation of a solitary wave of relative height 0.15 (a), 0.3 (b) and 0.45 (c).
Blue line corresponds to (6).

VII – Conclusions and perspectives

We presented a wave model derived from Luke’s variational principle by using an ansatz
for the velocity potential inspired from the shallow-water asymptotic expansion of [21].
No simplification is made in terms of the non-linearity. The equations exhibit a natural
non-local canonical Hamiltonian structure inherited from the ZCS formulation of water
waves. The proposed model is equivalent to the IK model which is a O(σ6)-approximation
of the ZCS formulation and can be further reduced to the SGN equations. First numerical
results are very promising and suggest that this model could be useful for applications in
which strong dispersive and non-linear effects are present. The approach proposed here
can be extended in a straightforward way to higher-orders and variable bottom.
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