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Résumé

Dans ce travail, nous considérons le problème de stabilité d’un navire en roulis sur
une houle régulière ou aléatoire. Le mouvement est modélisé comme un oscillateur non-
linéaire à un seul degré de liberté et nous tenons compte de la mémoire hydrodynamique
dans le cas aléatoire. Les coefficients de les équations correspondent à des données réelles.
L’excitation des vagues est périodique ou donnée par un spectre de vagues océaniques.
Nous comparons les critères de chavirement obtenus par la méthode asymptotique de
Melnikov avec des simulations numériques du bassin de sécurité.

Summary

We consider the problem of capsize of a rolling ship in regular or random beam
seas. We use a widespread model of the motion in which the roll angle is described by
a nonlinear oscillator with linear and quadratic damping and harmonic or random wave
excitation. In the latter case, we also take into account the hydrodynamic memory effect.
The coefficients in the equation are obtained as high-order approximations of real ship
data. We calculate numerically capsize criteria in terms of the forcing parameters using
Melnikov’s asymptotic method and compare with numerical simulations of safe basins for
random realisations of the wave excitation obtained from an ocean wave spectrum.
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I – Introduction

The current criteria that deal with the prevention of capsize of ships are based on the
righting arm which expresses the distance between the lines along which the resultants
of weight and buoyancy act as the ship inclines [11]. There exist a consensus that these
criteria should be improved. The reason is that they only take into account the restoring
capability of the ship in still water and ignore potentially important hydrodynamic effects
such as the added mass and damping moment, the viscous damping and the forcing due
to waves [21, 2, 7, 16]. A typical scenario that may lead to capsize is a ship rolling under
the action of waves turned in beam seas. The roll angle in this case is usually modelled
as a single-degree-of-freedom (SDOF) forced non-linear oscillator with damping. We also
adopt this approach in the present work.

A classical perturbative method to derive criteria for the loss of integrity of such
a system is the Melnikov method [18]. It is based on the assumption that the forced
and damped oscillator can be written as a weak perturbation of a Hamiltonian system
that possesses a homoclinic or heteroclinic orbits. It has been applied to the ship rolling
problem under harmonic excitation in [5, 17, 20, 25] and under random excitation in
[8, 19, 24, 22, 12], for instance. One of the difficulties in the latter case is that if the
excitation contains a broad range of frequencies (e.g. from an ocean wave spectrum) the
added mass and damping coefficients, being themselves frequency dependent, must be
evaluated at a certain frequency which is not a priori known. This can be avoided by
considering a Cummins-type integro-differential equation [4] that contains a convolution
term accounting for the history-dependent roll-radiation moment. This term, known as
the hydrodynamic memory, influences the probability of capsize and a universal strategy
for replacing it with constant added mass and damping coefficients does not seem plausible
[9].

Another method, primarily developed for the harmonic excitation case, is to study
the safe basin of the system by solving it numerically for several initial conditions and
characterise each of them as safe or unsafe [23, 25, 14]. Significant changes in the shape
and form of the safe basin (erosion) are associated with loss of structural integrity of
the system under study. This approach does not require a smallness assumption on the
perturbation but is characterised by an increased computational cost especially when the
hydrodynamic memory is taken into account. We extend this approach to the case of a
random wave excitation given by an ocean wave spectrum and use these results to assess
the critical parameters obtained by the Melnikov method.

II – The modelling of ship rolling

The roll angle with respect to the calm sea surface at time τ is denoted by ϕ(τ) and
is considered uncoupled from the other ship motions. In the case of a harmonic forcing of
frequency ω, ϕ(τ) satisfies

(I44 + A44(ω))
d2ϕ

d2τ
+ (B44(ω) +B1)

dϕ

dτ
+B2

dϕ

dτ

∣∣∣∣dϕdτ
∣∣∣∣+∆P (ϕ) = F44(ω)A cos(ωτ) (1)

where I44 is the rotational moment of inertia of the dry vessel about the rolling axis, A44(ω)
is the added mass moment and B44(ω) is the added damping coefficient. The coefficients
B1 and B2 are viscous linear and quadratic roll damping coefficients respectively. The
term ∆P (ϕ) represents the restoring moment experienced by the vessel in still water as
a function of ϕ and is obtained as the product of the vessel displacement ∆ with a highly
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non-linear odd polynomial P (ϕ) that vanishes at ϕ = 0 and at the angle of vanishing
stability, ϕ = ϕv. P (ϕ) approximates the graph of righting arm GZ(ϕ). The right hand
side (rhs) of (1) is the wave-induced moment excitation about the roll axis obtained as
the product of the sinusoidal free-surface elevation of amplitude A and frequency ω (wave
height H = 2A) with the roll moment per unit wave amplitude F44(ω).

In the random forcing case, the ship-roll equation takes the substantially different form
of a Volterra Integro-Differential Equation (IDE) [9] :

(I44 + A44(∞))
d2ϕ

dτ 2
+ (B44(∞) +B1)

dϕ

dτ
+B2

dϕ

dτ

∣∣∣∣dϕdτ
∣∣∣∣+

+

∫ τ

0

K(τ − σ)
dϕ

dτ
(σ) dσ +∆P (ϕ) = F (τ), (2)

where K(τ) is the hydrodynamic rolling moment due to impulse roll velocity also known
as the impulse response function (IRF) [4, 15, 10] or the hydrodynamic memory function
because it represents how roll-radiation moments depend on the history of the rolling
velocity. In Eq. (2), the forcing F (τ) is a random process. If the free-surface elevation
η(τ) is a stationary ergodic Gaussian stochastic process with a spectrum Sη(ω), then the
spectrum of F (τ) is given by

SF (ω) = F44(ω)
2Sη(ω). (3)

Here, we use the Modified Pierson-Moskowitz (MPM) Spectrum which is considered ap-
propriate for the response of marine vehicles and offshore structures in fully developed
infinite-depth wind-generated seas with no swell and unlimited fetch [6].

The quantities described above are obtained by linear hydrodynamic calculations or
experiments and are available for discrete values of ω or ϕ. For the purposes of Eqs. (1)
and (2) a suitable processing of these data is required. The righting arm is approximated
by a 9th degree odd polynomial. The added damping coefficient is interpolated up to the
frequency available by the hydrodynamic calculations and then it is extrapolated expo-
nentially. This is required for the calculation of the IRF function [1]. A typical example
is shown in figure 1.

III – The Melnikov method

In order to apply the Melnikov method, Eqs. (1) and (2) must be written as weakly
perturbed Hamiltonian systems. This is done by using the scalings

t = ωnτ, ω2
n =

C1∆

I44 + A44(ωn)
, and t = ωντ, ω2

ν =
C1∆

I44 + A44(∞)
, (4)

in Eq. (1) and (2) respectively. For Eq. (1), we obtain

ẋ = y

ẏ = −p(x)− ϵ (β1y + β2y|y|+ α cos(Ωt))
(5)

where x(t) = ϕ(τ), Ω = ω/ωn,

p(x) = x+
C3

C1

x3 +
C5

C1

x5 + . . . (6)
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Figure 1 – (a) GZ-curve and interpolating polynomial P (ϕ) of 9th degree, (b) added
damping coefficient B44(ω) obtained via interpolation and exponential extrapolation, (c)
Calculated impulse response function K(τ), (d) Roll moment per unit wave amplitude
F44(ω) and interpolating curve. The hydrodynamic data are shown with circles and cor-
respond to a real ship hull.

and

ϵβ1 =
B44(ω) +B1

C1∆
ωn, ϵβ2 =

B2

C1∆
ω2
n, ϵα =

AF44(ω)

C1∆
, (7)

Similarly, for Eq. (2) we have

ẋ = y

ẏ = −p(x)− ϵ

(
β1y + β2y|y|+

∫ t

0

k(t− s)y(s) ds

)
+ ϵf(t)

(8)

where

ϵβ1 =
B1

C1∆
ων , ϵβ2 =

B2

C1∆
ω2
ν , ϵk(t) =

K(t)ω2
ν

C1∆
, ϵf(t) =

F (t/ων)

C1∆
. (9)

III – 1 The unperturbed system

The unperturbed system obtained from (5) or (8) with ϵ = 0 is an integrable Hamil-
tonian system with potential energy of the typical form of a single well shown in figure
2(a). It possesses three fixed points, one stable center O(0, 0) and two saddle equilibrium
points O+(ϕv, 0) and O−(−ϕv, 0) which are connected by a symmetric pair of heterocli-
nic orbits denoted by x+

h (t) = (xh(t), yh(t)) and x−
h (t) = (−xh(t),−yh(t)) = −x+

h (t), see
figure 2(b). These orbits define the coincident stable and unstable manifolds of the two
saddles O+(ϕv, 0) and O−(−ϕv, 0) and separate the phase space into two qualitatively
distinct regions ; a bounded region, known as the safe basin, and its complement. Any
motion that starts from within the safe basin remains bounded, whereas any motion that
starts from its complement becomes unbounded.

III – 2 The Melnikov function

In the presence of a small perturbation, 0 < ϵ ≪ 1, the perturbed stable and unstable
manifolds do not coincide anymore. Their signed distance is measured in terms of the
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Figure 2 – (a) Potential well (b) Heteroclinic cycle x+
h ∪ x−

h ∪O+ ∪O− and vector field
f of the unperturbed system

position of the unperturbed manifolds. The first order approximation of this distance is
the Melnikov function. For a perturbed Hamiltonian system of the form

ẋ = f(x) + ϵg(x, t), f(x) =

(
y

−p(x)

)
, (10)

with x = (x, y), and g = (0, g(ẋ))T, the Melnikov function M(t0) is given by

M(t0) = −
∫ ∞

−∞
ẋh(s)g(ẋh) ds+

∫ ∞

−∞
ẋh(s)f(s+ t0) ds = M + M̃(t0), (11)

and is composed by a constant and a time-dependent part as also suggested by the in-
troduced notation [18]. If M(t0) > 0, then the perturbed stable and unstable manifolds
intersect transversely which means that safe points of the phase-space may now be found
in the exterior of the safe basin. This fact is used for the determination of critical parame-
ters for which this condition is satisfied. The evaluation of M(t0) requires the calculation
of the heteroclinic orbit of the unperturbed system which is performed numerically.

III – 2.1 Harmonic wave forcing

In the case of system (5), g(y) = −β1y − β2y|y|+ α cos(Ωt), and we have

M = β1

∫ ∞

−∞
y2hdt+ β2

∫ ∞

−∞
y2h|yh|dt (12)

M̃(t0) = α

∫ ∞

−∞
yh(s) cos [Ω(s+ t0)] ds = αC(Ω) cos(Ωt0) (13)

where

C(Ω) =

∫ ∞

−∞
yh(s) cos(Ωs)ds,

see e.g. [3], [18, Sec. 2.5.3]. M(t0) has a simple zero at some t0 if and only if αC(Ω) >
M . Thus, taking the equality, we may define a critical forcing amplitude beyond which
transverse intersection of the stable and unstable manifold occurs for a given Ω. The
corresponding critical wave height is given by

H∗(Ω) = 2C1∆
|ϵM |

F44(Ωωn)C(Ω)
. (14)
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III – 2.2 Random wave forcing

In the case of system (8), we have [9]

M = β1

∫ ∞

−∞
y2h dt+ β2

∫ ∞

−∞
y2h|yh| dt+

∫ ∞

−∞
yh(t)

∫ +∞

−∞
k(t− s)yh(s) ds dt (15)

M̃(t0) =

∫ ∞

−∞
yh(s)f(s+ t0) ds . (16)

Here, M̃(t0) is a random process defined by a linear transformation of the Gaussian

process f(t), hence it is also a Gaussian process. Its root expected value is E[M̃(t0)] = 0,
provided that E[f(t)] = 0. Its mean square value depends on the random wave excitation
parameters parameters (significant wave height Hs and characteristic frequency ωz) and
is given by

σ(Ω, Hs) = E[M̃(t0)
2] =

∫ +∞

0

2π Syh(Ω)Sf (Ω) dΩ (17)

where Ω = ωz/ων , Syh(Ω) is the spectrum of the heteroclinic orbit and Sf (Ω) is the
spectrum the forcing [8, 9] . Since the probability of M(t0) having simple zeros is non-
zero, a critical wave height in this case is obtained in terms of the phase-space transport.
Phase-space transport occurs as regions of the phase space are transported out of the safe
basin when the stable and unstable manifolds intersect. The sum of the areas of these
regions can be approximated at first order in ε in terms of M̃(t0) and the rate of phase-
space flux can be estimated. We refer to [18, 8, 9] for the details. The critical wave height
in this approach is defined in terms of the theoretical asymptote of the phase-space flux
as a function of the wave-height and is given by

H∗
s (Ω) =

√
2π ϵM

2σ(Ω, 1)
, (18)

This H∗
s gives a threshold after which substantial phase-space flux begins to occur, at first

order in ϵ.

IV – The concept of the erosion of the safe basin

In this approach, the capsize is identified as the escape from a potential well [23].
For any given set of initial conditions and excitation function, it is possible to solve
numerically (5) and (8) for a certain amount of time and judge if the ship has capsized or
not based on if the roll angle has exceeded the angle of vanishing stability. The subset of
initial conditions that did not lead to capsize after some specified duration D designates
the safe basin of our perturbed system. For the system (5) we use a classical 4th-order
Runge-Kutta method while for the integro-differential Eq. (8) we implemented a 4th-order
Runge-Kutta method of Bel’tyukov type [13] in order to accurately take into account the
convolution term. We generate approximate realisations of the random process F (t) as
superpositions of trigonometric functions with random phase. The mean integrity of the
safe basin is measured using the index

I =
1

N

N∑
n=1

Area(Sn)

Area(Suf)
(19)
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where N is the number of realisations, Sn is the safe basin corresponding to the nth

realisation and Suf is the safe basin of the unforced system, that is Eqs. (5) or (8) without
forcing. Obviously, in the deterministic case N = 1.

V – Results

In this section, we compare the critical curves obtained by the deterministic and
stochastic Melnikov method with the results obtained by numerical simulations of the
safe basins. For the harmonic excitation case the simulation time is D = 15(2π/ω) s
where ω = Ωωn is the forcing frequency. In this case, the linear damping coefficient εβ1

ranges from 0.015 to 0.04. In the random excitation case we have used εβ1 = 0.015,
D = 900 s and N = 150 realisations of the MPM spectrum. The phase space is discretised
in 1502 cells covering all possible initial positions and velocities. We also consider three
values of the quadratic damping coefficient εβ2 in order to study its effect. We plot the
results on the safe-basin integrity I as a function of the forcing frequency parameters
together with the Melnikov curves (14) and (18) in figure 3.

In both cases, the Melnikov curves are in qualitative agreement with the contour lines
of I corresponding to the percentage of the unforced safe basin that survived at the end of
the simulations. In the harmonic excitation case, severe erosion occurs in a small localised
region around the natural frequency. Also, the erosion becomes more abrupt as it can be
inferred by the converging contour lines. The Melnikov curves, give a rather conservative
prediction of the onset of erosion when εβ2 is weak and become less conservative with
increasing εβ2. A similar effect is also reported in [25] in terms of the linear damping.

In the case of a broad band random excitation, severe erosion occurs for a wider range
of frequencies and this is qualitatively captured by the Melnikov curve defined by (18). As
εβ2 increases, the Melnikov curve clearly enters in the unsafe region where a significant
probability of capsize is expected. We mention, for example, that along the Melnikov
curves the probability of capsize after time D of a ship initially at rest in a up-right
position is 0% for εβ2 = 0.005 and ranges from 3% to 40% for εβ2 = 0.05 and from 70%
to 100% for εβ2 = 0.10. This is because (18) gives a rough asymptotic estimation on the
critical wave height which is not applicable for large εβ2. An option would be to modify
the definition of critical wave height in terms of a percentage of the phase space flux [19].

VI – Conclusions and perspectives

We have implemented the Melnikov method for the SDOF ship-roll escape equation
with a single-well potential of degree 9, linear and quadratic damping and harmonic or
Gaussian excitation given by an ocean wave spectrum. In the latter case, we also take into
account the hydrodynamic memory via the convolution term in the Cummins equation. In
order to gain confidence on the critical wave height obtained by the Melnikov method we
have compared our results with highly accurate calculations of the safe basins for a broad
range of the forcing parameters (frequency and wave height). In the harmonic excitation
case, the Melnikov curves are below the onset of basin erosion and become less conservative
as the quadratic damping increases. A similar situation occurs in the random excitation
case. In fact, the critical wave height seems inadequate for large quadratic damping.
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Figure 3 – Integrity I of the safe basin for different values of the quadratic damping
coefficient εβ2 for the harmonic excitation case (left) and the random excitation case
(right). Solid red lines correspond to the Melnikov curves. Dashed lines are contour lines
representing the percentage of the unforced safe basin left at the end of the simulation
starting from 0.9 and decreasing by 0.1.
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