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Résumé

Dans le cadre de la problématique de l’interaction onde-structure, un modèle d’écoulement multi-phase
basé sur la méthode SWENSE (Spectral Wave Explicit Navier-Stokes Equations) est proposé avec une
interface air-eau représentée par une fonction Level-Set. Les champs de vitesse, pression et la fonction
Level-Set sont décomposés en parties incidente et complémentaire. Les termes incidents correspondant
aux équations d’Euler sont annulés grace à une extrapolation de la pression incidente dans la zone d’air. La
vitesse et pression incidente sont étendues dans la zone d’air avec des polynomiales cubiques pour avoir
une transition progressive et des valeurs réalistes. Des études paramétriques sont réalisées sur le modèle
proposé et les simulations sur un cylindre circulaire d’axe verticale dans la vague régulière sont établies et
donnent des résultats satisfaisants.

Summary

The multi-phase flow based on the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) method
with Level-Set function for modeling the interface is proposed for the wave-structure interaction problem.
The fluid velocity, pressure and level-set function are decomposed into the incident and complementary
parts. Part of the incident terms associated with Euler equations are canceled by introducing in air an
extrapolated incident pressure by density. The incident velocity and pressure are extended up to the air
region by using cubic polynomials to have smooth transition and realistic values. A series of parametric
studies on the proposed model is performed. A benchmark test on a vertical circular cylinder in regular
waves is conducted and obtained force-harmonics show competitive results.

1. Introduction

The viscous flow model based on finite volume discretization for the wave-structure interaction problem is
now commonly used as sufficient computational resources are accessible. Highly nonlinear phenomena such
as wave breaking, wave impact, and the effect of viscosity and vorticity can be modeled easily. The interface
between air and water can be modeled by introducing a color function. The commonly used color functions
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are Volume Of Fluid (VOF), Level-Set (LS) Function or Phase Function (PF) [1, 2, 3]. The behavior of
the interface is determined by solving the transport equation of the color function. The convection terms in
the transport equation introduce the numerical damping which causes interface smearing, and controlling the
quality of wave propagation in the computational domain becomes important. Many techniques to keep the
interface sharp and to have less dissipation have been proposed [4, 5, 6].

Ferrant et al. (2003) introduced a functional decomposition method which is named as Spectral Wave
Explicit Navier-Stokes Equations (SWENSE) not to consider the incident waves in the variable to solve [7].
It decomposes the total functional quantity into the incident and complementary parts. As the incident flow
is assumed to be known, the governing equations are reformulated for the complementary terms. If the fully
nonlinear potential flow model is used for incident waves, some of the incident terms associated with the
Euler equations can be eliminated. Therefore, the numerical model concerns only the complementary parts.
It makes the computational grid to be modeled dense near to the body only and is regarded as efficient.
This methodology has been applied for single-phase fluids by [8, 9, 10] with marine hydrodynamic purposes.
Recently, the principles of SWENSE have been extended to the multi-phase flow. The decomposition of
velocity and LS function is applied by [11]. Li (2018) decomposed the velocity and pressure, then the Euler
terms are eliminated by introducing the pseudo incident pressure [12].

In the present study, the velocity, pressure and LS fields are decomposed into the incident and complemen-
tary parts and the terms associated with the Euler equations are canceled. A parametric study on the proposed
model is conducted for wave propagation with a periodic boundary. Finally, benchmark tests on a vertical
circular cylinder in regular waves are conducted.

2. Theoretical background

2.1 Navier-Stokes equations for multi-phase flow

Incompressible air and water which has an interface between two fluids are considered in the present study.
The behavior of fluid is governed by the Navier-Stokes equations given as:

∇ ·ui = 0
∂ui

∂ t
+∇ · (uiui) =−

1
ρi

∇pi +∇ ·
(
νi
(
∇ui +∇uT

i
))

+g
i = a or w (1)

where subscripts i = a,w represent the quantities associated with air (a) and water (w), respectively. The fluid
density ρ and the kinematic viscosity ν are characterized by fluid. u, p and g are the fluid velocity, pressure
and gravitational acceleration, respectively.

On the interface, two conditions are imposed. The kinematic condition states that air and water particles
on the interface move together and it is given in:

ua = uw ⇔ JuK = ua−uw = 0 x ∈ SF (2)

where the jump operator J f K = fa− fw is defined hereafter to represent the difference of quantity f across the
interface SF . The other interface condition is called the dynamic condition. It states about the stress balance
on the interface [13, 14] which gives the tangential and normal stress balance. With a dimensional analysis on
the stress balance Huang et al. (2007) showed that the tangential stress balance, effect of viscosity and surface
tension can be neglected in a marine application which is characterized by a high Reynolds number [15]. The
dynamic condition for a high Reynolds number is simply given as:

pw = pa ⇔ JpK = 0 x ∈ SF (3)

The Level-Set (LS) function introduced for interface modeling is defined as the signed distance function
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from the interface:

ψ(x) =


−d if x ∈Ωa

0 if x ∈ S f

d if x ∈Ωw

(4)

where d is the distance from the interface SF , and Ωa and Ωw represent the air and water region, respectively.
The interface is determined by solving the transport equation of LS function given in

∂ψ

∂ t
+u ·∇ψ = 0 (5)

As the LS function can represent the air and water by its signed value, the air and water can be accounted as
the mixture as:

ρ = αρw +(1−α)ρa

ν = ανw +(1−α)νa
(6)

with the Volume Of Fluid (VOF; α) :

α =
1
2
[{signψ(x)}+1] (7)

The Navier-Stokes equations for air and water in (1) can be written as combined equations for the mixture as

∇ ·u = 0 (8a)
∂u
∂ t

+∇ · (uu) =− 1
ρ

∇p+∇ ·
(
ν
(
∇u+∇uT))+g (8b)

2.2 SWENSE for multi-phase flow

The Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method has been introduced for the wave-
structure interaction problem by [7]. The main principle of SWENSE deals with the decomposition of func-
tional quantity χ into the incident and complementary parts:

χ = χI +χC (9)

where the subscripts I and C represent the incident and complementary quantities, respectively. As the incident
quantity, which is available from the potential flow model, can satisfy the Euler equations if the incident
wave model, satisfying the fully nonlinear free surface condition, is used, some terms associated in the Euler
equations can be canceled. Then, unknowns are the complementary parts only which are zero when the
body does not exist. The SWENSE method has been validated for several marine applications as described
in [8, 9, 10]. Recently, the principle of SWENSE has been extended to the multi-phase flow. Vukčević et
al. (2016) have adopted the velocity and LS function decomposition but the total pressure remains in the
governing equations, e.g. terms associated with the Euler equations are not canceled [11]. Later Li (2018)
decomposed the fluid velocity and pressure by introducing a pseudo incident pressure and terms associated
with the Euler equations can be eliminated [12]. Nevertheless the interface quantity is not decomposed as he
adopted the VOF function for the interface modeling. In the present study, ideas of two previous studies are
combined to decompose the fluid velocity, pressure and LS function as

u = uI +uC ⇔ uC = u−uI (10a)
p = pI + pC ⇔ pC = p− pI (10b)

ψ = ψI +ψC ⇔ ψC= ψ−ψI (10c)
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To eliminate the terms associated with Euler equations for the mixture, a pseudo incident pressure, which is
scaled with the mixture density, is introduced as [12]:

p∗I =
ρ

ρw
pI (11)

Then, the Euler equations for the incident flow can be expressed as:

∂uI

∂ t
+∇ · (uIuI) =−

1
ρ

∇p∗I +
pI

ρw

∇ρ

ρ
+g (12)

The second term in the right-hand-side, pI
ρw

∇ρ

ρ
is equal to zero in both water and air regions, respectively, but

it has non-zero value on the interface SF . Substituting (10) into equations (8) and (5), and using the relations
∇ ·uI = 0 and (12), we obtain the SWENSE equations for multi-phase flow based on LS function:

∇ ·uC = 0 (13a)
∂uC

∂ t
+∇ · (uuC)+uC ·∇uI =−

1
ρ

∇pc−
pI

ρw

∇ρ

ρ
+∇ ·

[
ν
(
∇uC +∇uT

C
)]

(13b)

∂ψC

∂ t
+u ·∇ψC =−∂ψI

∂ t
−u ·∇ψI (13c)

The kinematic and dynamic interface conditions for complementary flow are given as:

JuCK = uC,a−uC,w = 0 (14a)

JpCK = pC,a− pC,w = pI
ρw−ρa

ρw
= HI (14b)

At the initial time t = 0, there is no disturbance due to interaction between structure and waves, the com-
plementary velocity, pressure and LS function are set to zero as:

uC = 0 pC = 0 ψC = 0 at t = 0 (15)

The boundary conditions for the body and bottom surface are given as:

uC = ub−uI and
∂ψC

∂n
= 0 (16a)

where ub is the instantaneous velocity of the body/bottom surface. The above conditions state that no flux
and LS flux across the body/bottom surface. In the far-field, the relaxation scheme is applied to absorb the
complementary flow as [16]

uC = (1−w)uC and ψC = (1−w)ψC (17a)

where w ∈ [0,1] is the weight function defined in the relaxation zone, e.g. w = 0 at the entrance and w = 1 at
the end of relaxation zone. Therefore, the complementary flow is set to zero at the end of the relaxation zone.
The pressure boundary condition is automatically given from the extrapolated uC at the boundary surface. The
atmospheric boundary condition is imposed on the boundary surface at the top.

2.3 Modeling of incident waves

The solutions of SWENSE strongly depend on incident quantities as some terms are canceled in the Euler
terms and the other terms act as the sources in momentum equations and at the boundary surface. In the
present study, the incident quantities are obtained from the nonlinear potential flow model such as stream
function theory for regular waves [17, 18]. As the fully nonlinear potential flow theory is limited to the water
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(a) Schematic view on the extension (b) |uC| field with cubic polynomials extension

Figure 1. Extended incident velocity up to the air by using cubic polynomials

region, the incident flow quantities in the air are obtained by stretching the vertical modal function. The
vertical modal function, which is used in the incident wave model, is given by hyperbolic function which
makes the incident quantities in the air very large which is unrealistic and causes numerical instability.

In the present study, the incident velocity and pressure are extended to the air by using cubic polynomials
to prevent large and unrealistic values, but to have a smooth transition from the water to the air. Let the vertical
position of incident wave is at z = Ξ and the incident/air quantity and its gradient are known at z = Ξ+ hre f
and z = Ξ+hre f +hthickness as:

f (Ξ+hre f ) = f0,
d f (Ξ+hre f )

dz
= f ′0, (18a)

f (Ξ+hre f +hthickness) = f1
d f (Ξ+hre f +hthickness)

dz
= f ′1. (18b)

where hre f is a reference height from the interface to the starting point of transition, hthickness is an interval of
transition, respectively. Introducing cubic polynomials with a normalized coordinate ζ̃ defined in transition
interval as:

g(ζ̃ ) = aζ̃
3 +bζ̃

2 + cζ̃ +d, (19)

where a, b, c and d are polynomial coefficients. The normalized coordinate ζ̃ ∈ [0,1] is obtained by:

ζ̃ =
z−Ξ+hre f

hthickness
. (20)

The schematic view and the extended incident velocity up to the air region are shown in Figure 1.

3. Numerical modeling

3.1 Finite Volume (FV) discretization

The governing equations can be discretized with a set of collocated Finite Volume (FV) in the computational
domain. The code is developed in OpenFOAM framework based on the procedure proposed by [19, 20]. The
discretization is conducted with the second-order accuracy on an arbitrary polyhedral [21]. Following the
discretization notation proposed by [22], the momentum equations in (13b) without pressure gradient can be
discretized as {

∂uC

∂ t
+∇ · (uuC)−∇ · (ν∇uC)

}i

=

{
− pI

ρw

∇ρ

ρ
−uC ·∇uI +∇uC ·∇ν

}e

(21)
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where superscripts i and e represent the implicit and explicit discretization, respectively. As a result, we obtain
the discretized momentum equations:

aP (uC)P +∑
f

aN(uC)N = s(uC) (22)

where (q)P and (q)N denote the cell-averaged value q at owner P and neighbor N cells, respectively. aP and aN
are the diagonal and off-diagonal terms of discretized momentum equations, f denotes the face surface which
is shared by owner and neighbor cells, s(uC) denotes the source terms of momentum equations, respectively.
The predicted complementary velocity from the discretized momentum equation in (22) is given as:

(uC)
′
P =

1
aP

H{(uC)P}=−
1
aP

{
∑

f
aN (uC)N− suC

}
(23)

As the predicted complementary velocity (uC)
′
P do not satisfy the continuity equation, the pressure equation

can be constructed to satisfy the continuity equation as:

∑
f

(
1
aP

)
f

(
1
ρ

∇(pC)P

)
f
·ds f = ∑

f

(
1
aP

H{(uC)P}
)

f
·ds f (24)

where (q) f is the interpolated value at the face center f . After solving the pressure equation, the complemen-
tary flux at face f is computed as:

Ff = s f · (uC +uI) f = s f ·

{(
1
aP

H{(uC)P}
)

f
−
(

1
aP

)
f

(
1
ρ

∇(pC)P

)
f
+(uI) f

}
(25)

3.2 Ghost Fluid Method(GFM) for the pressure extrapolation

The complementary pressure on the interface has a jump condition given in (14b) which requires the extrapo-
lated pressure across the interface. The continuous fluid acceleration on the interface is given in

rDu
Dt

z
=

r
− 1

ρ
∇p+∇ · (ν∇u)+∇u ·∇ν +g

z
= 0, on x ∈ SF (26)

For a high Reynolds number flow, the terms associated with viscosity and surface tension can be neglected.
Furthermore the pseudo-incident pressure 1

ρ
∇pI is continuous across the interface [12], therefore the interface

condition for complementary pressure gradient can be given as:

J
1
ρ

∇pCK = 0 (27)

By using this relation, the complementary pressure can be extrapolated. The extrapolation procedure pro-
posed by [11] considering jump conditions in (14b) and (27) are used in the present study. The extrapolated
complementary pressure at the Ghost Fluid Cell are given as:

(
pC,w

)GC
N =

ρa

ρ̃w
(pC)N +

(
1− ρw

ρ̃w

)
(pC)P−

HI

ρ̃w
P is wet, N is dry

(
pC,a

)GC
N =

ρw

ρ̃a
(pC)N +

(
1− ρa

ρ̃a

)
(pC)P +

HI

ρ̃a
P is dry, N is wet

(28)

with the interpolated density ρ̃w = λ f ρw +
(
1−λ f

)
ρa and ρ̃a = λ f ρa +

(
1−λ f

)
ρw with the normalized dis-

tance from the cell center to the interface λ f =
(ψ)P

(ψ)P−(ψ)N
. The extrapolation procedure is well described in

[20].
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4. Results and Discussion

4.1 Wave propagation with periodic boundary

The propagation of waves with periodic boundary conditions is used for the parametric study. The schematic
view of the problem is shown in Figure 2. The computational domain is one wavelength (1λ ) long and
the height is taken to be 2h (h = 0.6m; water depth). Horizontally, the computational cells are uniformly
distributed. Vertically, the cells are distributed uniformly in the free surface zone z ∈ [−H,H] (H: wave
height). In the water and air zones where z ∈ [−h,−H],z ∈ [H,h], the cell height is gradually stretched as it
goes far from the mean free surface z = 0 with a constant cell height ratio, max(∆zi)/min(∆zi) = 5 where i
denotes the index in vertical direction. Fully nonlinear regular wave potential solution is considered and the
wave condition is given in Table 1. The same case has been used in [23] without the SWENSE model.

(a) Computational domain (b) Initialized α-field (c) Computational mesh

Figure 2. Schematic view on the parametric study of propagating waves with the periodic boundary condition.

Table 1. Wave condition

Item Unit Value
Water depth (h) [m] 0.6
Wave period (T ) [s] 0.7018
Wave height (H) [m] 0.0575
Wavelength (λ ) [m] 0.8082

H/λ [-] 0.0712

The parametric study on spatial and temporal discretization is conducted with parameters in Table 2. Rep-
resentative Courant (Co) and Reynolds numbers (Re∆) are kept in a set of simulations and they are given in

Co =
√

Co2
x +Co2

z , Re∆ =
√

Re2
∆x +Re2

∆z (29)

with

Cox =
uwave∆t

∆x
, Coz=

wwave∆t
∆z

, Re∆x =
uwave∆x

νw
, Re∆z=

wwave∆z
νw

where uwave and vwave are the horizontal and vertical fluid velocities obtained from the potential flow model. A
Crank-Nicholson time scheme with cCN = 0.95 is used for all local terms. Convection terms of complementary
LS function transport equation are discretized by vanLeer scheme and a first-order upwind scheme is used
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Table 2. Spatial and temporal discretization for convergence test.

Case λ/∆x H/∆z T/∆t Co Re∆

Mesh025-dt100 25 5 100 0.171 8,836
Mesh030-dt120 30 6 120 0.171 7,363
Mesh040-dt160 40 8 160 0.171 5,523
Mesh050-dt200 50 10 200 0.171 4,418
Mesh100-dt400 100 20 400 0.171 2,209
Mesh200-dt800 200 40 800 0.171 1,105
Mesh100-dt200 100 20 200 0.684 2,209
Mesh100-dt800 100 20 800 0.086 2,209

Mesh100-dt1600 100 20 1600 0.043 2,209

(a) Co discretization (b) Re∆ discretization

Figure 3. First-harmonic wave amplitudes with respect to Co and Re∆ discretization.

to discretize convection terms in momentum equations. The wave elevation at the center of the computation
domain is measured during the simulation. The moving window Fast Fourier Transform (mwFFT) with unit
window function over one wave period is applied to obtain the first-harmonic amplitude of wave elevation over
simulation time. The first-harmonic amplitudes of wave elevation with respect to Co and Re∆ discretizations
are shown in Figure 3. When the coarse temporal and spatial discretization are used, the first-harmonic
amplitudes of wave elevation show unstable results compared to the simulation case with a fine discretization.
The results are convergent to the reference value as fine discretization is applied. The least square procedure
of [24] is applied to estimate the order of convergence (p) over the observation window t ∈ [25T,40T ] and the
results are shown in Figure 4. The obtained convergence orders for Co and Re∆ discretization are p = 1.2 and
2.0, respectively.

The parametric study case is simulated with the other viscous flow solver called foamStar with the same
discretization. The foamStar is viscous flow model solving the Navier-Stokes equations with VOF interface
modeling described in [25]. The VOF compression parameter cα = 0.3 used in VOF transport equation is
adopted. The first-harmonic amplitudes and phase disturbance during simulation time are compared in Figure
5. The results show that the proposed method based on the SWENSE with LS preserves the propagating waves
better than the viscous flow model solving the Navier-Stokes equations with VOF.
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(a) Co discretization (b) Re∆ discretization

Figure 4. The convergence of the first-harmonic amplitude with respect to Co and Re∆ discretizations.

(a) Amplitude (b) Phase difference

Figure 5. Comparison between SWENS equations with LS function and Navier-Stokes equations with VOF for wave
propagation.

4.2 Force harmonics on the vertical circular cylinder

A benchmark test on a vertical circular cylinder in regular waves is considered. A set of experiments was
conducted by [26] to obtain the force harmonics. A cylinder with radius r = 0.03m is fixed in the wave
tank of depth h = 0.6m. The regular waves of frequency f = ω

2π
= 1.425 Hz with various wave heights

(H) are generated in the wave tank. In the present study, simulations are conducted in a wave steepness range
kH ∈ [0.12,0.48]. A circular cylindrical mesh with a radius of 2λ = 1.537m and the height 0.8m is considered.
A relaxation zone with the length of 1.5λ is defined from the outer boundary. The computational domain is
discretized with a cell length ratio in the radial direction ∆Rmax/∆Rmin = 40. The number of cells in the radial
direction is NR = 40. The mesh is discretized uniformly in θ -direction with Nθ = 30. Three mesh blocks
are considered in the vertical direction. The underwater block is defined in z ∈ [−0.6H,−0.75H] with cell
height ratio ∆zmax/∆zmin = 50, and number of cells Nz1 = 25 is used. The free surface block is defined in
z ∈ [−0.75H,0.75H]. This part of the domain is discretized uniformly with Nz2 = 40. The air block is defined
in z ∈ [0.75H,0.2m]. Here the mesh uses a cell height ratio ∆zmax/∆zmin = 12 with number of cells Nz3 = 15.
The computational mesh used for the simulation case kH = 0.48 is shown in Figure 6. The time step is set to
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T/∆t = 800. Total number of cells used for computation is Ncell = 190,000.

Figure 6. Computational mesh used for thin cylinder in regular waves, kH = 0.48.

Figure 7 shows total wave elevations around cylinder for simulation time. Complementary waves generated
by a vertical cylinder are clearly verified.

(a) t = 30T (b) t = 30T +
1
4

T

(c) t = 30T +
2
4

T (d) t = 30T +
3
4

T

Figure 7. Total wave field around cylinder at 4 instants, kH = 0.48.

Analytical solutions on the vertical circular cylinder in regular waves are available up to third-order [27,
28, 29]. Amplitudes of force harmonics are normalized as:∣∣∣F(n)

∣∣∣
ρwgr3

(
r

H/2

)n

(30)

where (n) denotes the order of harmonics. The phase of force harmonics are denoted as ϑ(F(n)
x ) in Figure 8.

Obtained first and higher harmonics of horizontal force are compared in Figure 8 with results of associated
studies [30, 31, 12].
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First-harmonic amplitudes and phases have similar tendencies with the results of [12]. However, small
amplitude differences are observed for small kH that should have a similar value with the analytical solution.
It is understood that the discretization considered in the present study is not enough to model the small-
amplitude waves. Second-harmonic amplitudes and phases show similar results with [12]. Third-harmonic
amplitudes and phases are slightly different for small kH compared to others and analytic solution. Force
harmonics calculated by the proposed method show good results even though a relative coarse discretization
(Ncell = 190,000) is used.

Figure 8. Harmonics of horizontal force acting on the cylinder.
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5. Conclusion

A SWENSE method based on Level-Set function is proposed for multi-phase flows. The solver is developed
in OpenFOAM framework. The fluid velocity, pressure and Level-Set function are decomposed into incident
and complementary parts. A parametric study on the temporal and spatial discretization shows good and con-
vergent results to the reference value. On the wave-structure interaction problem chosen, the force-harmonics
on the vertical circular cylinder in regular waves show a similar accuracy to associated studies, and this with a
relatively coarse spatial and temporal discretization. Further work is needed to assess the performances of the
developed solver in a wider range of applications and its competitivity against other solvers.
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