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Résumé

Le problème de tenue à la mer d’un navire animé d’une vitesse d’avance dans la houle est réexaminé
dans la présente étude. Suivant la décomposition de l’écoulement total en un écoulement de base et
l’écoulement de perturbation contenant une composante stationnaire et une instationnaire, une nouvelle
linéarisation cohérente de l’écoulement de perturbation, en particulier, la condition aux limites sur la sur-
face libre, est formulée. En choisissant le courant dévié par le navire (l’écoulement de double modèle)
comme l’écoulement de base, un nouveau système d’équations intégrales sur les frontières a été établi en
appliquant le théorème de Green. Les équations intégrales comprennent une intégrale localisée sur une
zone de surface libre proche du corps, sans l’intégrale le long de la ligne de flottaison qui est présente
dans l’approche classique avec la linéarisation sur l’écoulement uniforme. Pour étudier l’intégrale sur la
surface libre, la fonction de Green est reformulée par l’introduction de dissipation en raison du viscosité
de fluide tel que les comportements singulières et hautement oscillatoires de la fonction de Green sont
éliminés. L’intégrale sur la surface libre localisée est donc effectuée sans difficulté majeure. Des résultats
numériques montrent que la présente méthode fournit bien un outil fiable et pratique pour étudier les efforts
sur un navire animé d’une vitesse d’avance dans la houle ainsi que les réponses dynamiques du navire.

Summary

The classical problem of wave radiation and diffraction around a ship advancing in waves is re-considered.
Based on the decomposition of total flow into base flow and perturbation flows which contain steady and
unsteady components, a consistent linearisation of perturbation flows is carried out. By choosing the ship-
shaped stream (double-body flow) as the base flow, a new set of boundary integral equations (BIE) are
established by applying the Green’s theorem. The resultant BIE includes a localized free-surface inte-
gral in the vicinity of ship but without the troublesome waterline integral in the classical Neumann-Kelvin
approaches (NK). To treat with the free-surface integral, the classical Green function associated with a pul-
sating and translating source is modified by considering the dissipation effect so that the complex singular
and highly-oscillatory behaviour disappear. The special free-surface integral can thus be evaluated without
major difficulty. Numerical results shows that this new method provides the sound and reliable solution to
ship seakeeping with forward speed, to evaluate wave loads and induced ship responses.

1. Introduction
Being critically important in the design of ships, many studies have been done in the past for studying ship
seakeeping with forward speed. No need to mention tremendous progress in applying CFD to ship seakeeping,
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we like to focus on the classical potential theory derived from the assumption of idea fluid and irrotational flow.
There have been two mainstream methods including the NK approach based on the use of Green’s function
(GFM) and the Rankine source method (RSM). The classical GFM reduces the number of unknowns on the
hull and along waterline since it satisfies the boundary condition on the free surface. Major difficulty consists
of computing the Green’s function, its derivatives and their integration on the hull and along the waterline, as
summarized in [1]. On the other side, the RSM is relatively simple to evaluate and accommodating to a variety
of boundary conditions on the free surface. However, large number of unknowns have to be distributed over
the free surface and uncertain errors associated with the truncation and the design of numerical damping zones
impede its applications in practice. Considering advantages and drawbacks of two methods, a multi-domain
method has been developed recently in [2], to combine the use of RSM in an interior domain surrounding the
ship but limited by a control surface of cylindrical form and the use of GFM in the complementary exterior
domain beyond the control surface.
In the present paper, we revisit the GFM with two new developments. First, a consistent linearisation of
unsteady flow over the ship-shaped stream, often called double-body flow, leads to BIE including a localised
free-surface integral in the vicinity of ship but without the troublesome waterline integral. Second, the classical
Green function associated with a pulsating and translating source is modified by introducing the dissipation
effect based on the formal analysis of the Laplace-Fourier transform applied to the Stokes flow presented
in [4]. The complex singular and highly-oscillatory behaviour in classical Green’s function analysed in [3]
disappear so that the free-surface integral can be evaluated without major difficulty.

2. Ecoulement instationnaire autour d’un navire
We define a Cartesian coordinate system translating at the speed U with the ship in the positive x-direction.
The z-axis is positive upwards with the origin at the undisturbed free surface. Relative to this reference
frame, there exists an ambient flow −U~i opposite to ship forward direction. The presence of ship in this
ambient flow creates a ship-shaped steady flow around the hull, called base flow W =U∇(φ̄ − x). In addition
to this base flow, there should be a wavy steady flow ∇φ . When ship oscillates about the reference frame
or/and in incoming waves, there exist also unsteady flow ∇ψ . The wavy steady and unsteady flows called
perturbation flow represented by the velocity potential Φ = φ +ψ . The velocity potentials (φ̄ ,φ ,ψ) satisfy
the Laplace equation in fluid. The total flow W+∇Φ satisfies the kinematic and dynamic conditions written
in the combined form

Φtt +gΦz +2W ·∇Φt +W ·∇(W ·∇Φ)+∇Φ · (W ·∇)W
=−2∇Φ ·∇Φt− (W+∇Φ) · (∇Φ ·∇)Φ−∇(W ·∇Φ) ·∇Φ−gφ̄z−W · (W ·∇)W

(1)

on the free surface z = η which is defined by

η =−1
g

[
(∂t +W ·∇)Φ+

1
2

∇Φ ·∇Φ+
1
2
(W ·W−U2)

]
(2)

The above equations (1) for potentials and (2) for wave elevations are fully nonlinear with quadratic and cubic
products of potentials since only assumption of time independence concerns the base flow W. Direct solutions
of such problems are extremely difficult if not impossible.

2.1 Conditions aux limites sur la surface libre

We assume now the base flow W = U∇(φ̄ − x) is of order O(1) while the perturbation flows Φ = φ +ψ are
of smaller order o(1) comparing to the base flow (φ̄ − x). In this way, the quadratic and cubic products of
(φ ,ψ) are ignored. Furthermore, the free-surface elevation η is also assumed to be of smaller order o(1)
which is true for small or moderate speed. The Taylor expansion of all terms in (1) with respect to z = 0
can be obtained by using T |z=η ≈ T |z=0 +ηTz|z=0 in which T represents any term in (1) and (2). Finally,
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the frequency-domain expression of unsteady potential is written as ψ = ℜe{ϕe−iωt}L
√

gL and the base flow
W =Uw with w = ∇φ̄ −~i is used to obtain the linear boundary condition

ϕz− f 2
ϕ−2iτw ·∇ϕ +F2w ·∇(w ·∇ϕ)+F2

∇ϕ · (w ·∇)w+ φ̄zz(iτϕ−F2w ·∇ϕ) = 0 (3)

on z = 0. In (3), we have used the notations f = ω
√

L/g for encounter frequency, F = U/
√

gL the Froude
number and τ = f F the Brard number with L the ship length.

2.2 Fonction de Green avec dissipation

We define the fundamental solution at the field point P(xp,yp,zp) associated with a translating and pulsating
source located at Q(x,y,z), i.e. the Green’s function G(P,Q) which satisfies the special equation of Poisson
type ∇2G(P,Q) = 4πδ (|P−Q|) with δ (·) the Dirac function. Based on the formal analysis of the Laplace-
Fourier transform applied to the Stokes flow, in [4], the leading effect of vorticity is represented by an addi-
tional term appearing in the boundary condition at the free surface. Indeed, the linear boundary condition with
dissipation is written by

Gz− f 2G−2iτGx +F2Gxx +4ε(FGxzz− i f Gzz) = 0 (4)

on z = 0. In (4), the coefficient ε = µ/(ρ
√

gL3) is proportional to the fluid viscosity µ . It is shown that
the magnitude of elementary waves ekz+i(kx−ωt) decays like e−4εωk2x more rapidly with short waves of large
wavenumber. This implies that the complex singular and highly oscillatory behaviours in G(P,Q) due to short
waves predicted in [3] just disappear.

2.3 Equations intégrales aux frontières

Applying the Green’s theorem to the couple potentials (ϕ,G) in the fluid domain and on all the boundaries
including the hull H, the free surface S and at infinity S∞, we have the integral equation

2πϕ
H +−

∫
−
∫

H
ϕ

HGn ds+
∫∫

S
ϕ

F(Gz− f 2G)φ̄x ds =
∫∫

H
ϕ

H
n Gds (5)

for P ∈ H and that
4πϕ

F +
∫∫

H
ϕ

HGn ds+−
∫
−
∫

S
ϕ

F(Gz− f 2G)φ̄x ds =
∫∫

H
ϕ

H
n Gds (6)

for P∈ S. The integral on S∞ is nil due to the radiation conditions for (ϕ,G). The integral on the free surface S
involving the boundary condition (3) for ϕ and (4) for G is analysed in a similar way as [5] but different results
are obtained. In fact, the free-surface integral is partially transformed into waterline integrals by making use
of Stokes theorem. The integrand function of waterline integrals contains the factor w ·n which is zero if the
ship-shaped stream w · n = 0 on H and the condition φ̄z = 0 on z = 0 are imposed. The remaining part of
free-surface integrals is dominated by the third term on the left side of (5) and (6). This term is significant
only in the vicinity of waterline due to fast decay of double-body flow φ̄x.
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