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Summary

Accurate prediction of wave breaking in the coastal zone is important for various en-
gineering activities and environmental issues. Numerous studies have been undertaken to
describe when and where wave breaking occurs. However, there is no universal formu-
lation so far to account for wave breaking in numerical models such as Boussinesq-type
models. The recent study of [3] in intermediate and deep water defines an energetic cri-
terion that seems promising at providing a more universal criteria. In the present paper,
we assess the applicability of this breaking criteria in shallow water, based on a 2D fully
nonlinear potential model.

Résumé

Prédire de manière précise le déferlement des vagues en zone côtière est important
pour diverses activités d’ingénierie et de problèmes environnementaux. De nombreuses
études ont été réalisées pour décrire quand et où se produit le déferlement des vagues.
Cependant, il n’existe pas encore de formulation universelle permettant de prendre en
compte le déferlement des vagues dans les modèles numériques tels que les modèles de
type Boussinesq. La récente étude de [3] en eaux intermédiaires et en eaux profondes
définit un critère énergétique qui semble prometteur pour fournir un critère plus universel.
Dans cet article, nous évaluons l’applicabilité de ce critère de déferlement en eaux peu
profondes, à partir d’un modèle potentiel non-linaire 2D.
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I – Introduction

Breaking waves create significant dynamical loadings on ocean engineering structures.
Waves at the transition to breaking are critical design condition for marine and coastal
structures. Optimal structural design require an accurate prediction of the onset and
strength of wave breaking in the surf zone. Coastal engineering studies also need detailed
wave characteristics at the breaking point [6, 14]. The surf zone dynamic is very complex,
many processes and physical phenomenon (shoaling, refraction, diffraction, infragravity
waves, rip currents, wave breaking) that happen at different time and space scales inter-
act. The nonlinear and irregular processes that occur just before a wave breaks, make
predicting its onset difficult.

A significant effort has been undertaken to accurately simulate nonlinear wave trans-
formations towards breaking in shallow water in the past few decades for various nearshore
activities and environmental issues. The choice of a proper numerical model to simulate
the wave evolution toward breaking are among the important issues that must be consid-
ered. Numerical models such as Boussinesq-type (BT) models assume a single-valued free
surface and can not reproduces the crest overturning inherent to breaking waves, there-
fore they can not reproduce breaking waves. To solve for wave breaking in BT models,
two steps are required : a wave-breaking onset criteria and a method for computing wave
breaking energy dissipation.

Many wave breaking onset criteria, aimed at practical applications, have been proposed
over the last half century through theoretical study, numerical simulations, laboratory
experiments or field observations [30, 12]. These criteria can be classified into three
categories : geometric, kinematic and dynamic.

I – 1 Geometric breaking criteria

Geometric criteria use either a steepness threshold, a wave asymmetry threshold or
an angle of the wave front threshold to determine wave breaking onset. This type of
breaking criteria has been used as indicator of breaking onset in deep and shallow waters
[20, 1, 23, 15]. As described in the wave breaking review of [19] in deep water, the threshold
value can vary widely depending on the breaker type and the method used to generate
the breaking event. In shallow water, [23, 15, 26, 5, 31] use different front surface angles
threshold for wave breaking onset and termination in BT models. These thresholds have
to be calibrated depending on the bathymetry and the breaker type.

Such differences in the wave geometry at breaking make the geometric criteria unsuit-
able as a breaking onset criteria in deep and shallow waters.

I – 2 Kinematic breaking criteria

The deep water kinematic breaking criterion is based on the relationship between the
horizontal wave crest particle velocity u and the wave phase speed c. Wave breaking
occurs when u/c ≥ 1. Difficulty arises in this criterion when determining u and c for
highly unsteady and rapidly changing waves. From experiments in deep water cases,
[27, 34, 2, 30] found different threshold values of the ratio u/c depending on the breaking
configurations (type of breaking wave, wave generation mechanism, etc). In shallow water,
the breaking criteria of [13, 32, 6] used in BT models can be classified as kinematic criteria.
[13] defines a criterion based on the normal speed of the free surface elevation, [32] uses
a relative Froude number and [6] combines the two previous criteria. These criteria have
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been used in other studies [4, 17] that provide different threshold values of the calibration
parameters.

Although the kinematic or geometric wave properties have been traditionally used for
wave breaking criteria in deep or shallow waters, these criteria require calibration and are
not universally applicable.

I – 3 Dynamic breaking criteria

Empirical findings based on observations of modulated deep water wave groups suggest
that breaking occurs when the local flux of energy in a wave, generally close to the center
of the group, exceeds a given threshold ([25, 29]).

[3] have recently proposed a wave breaking threshold parameter B based on the local
energy flux relative to the local energy density, normalised by the local crest speed as
described in the following equations.

B =
F

E‖c‖
(1)

with E the energy density defined as

E = ρg(z − z0) +
1

2
ρ‖u‖2 (2)

and F the local energy flux defined as

F = u
(

(p− p0) + ρg(z − z0) +
1

2
ρ‖u‖2

)
(3)

where p is the pressure, p0 is the pressure above the surface, ‖u‖ is the fluid speed,
g is gravitational acceleration, z is the vertical coordinate and z0 is the vertical level of
reference.

With a zero surface pressure condition, the parameter defined by [3] reduces to Bx,
the ratio of the surface fluid speed u in the wave propagation direction (x) to the crest
point speed c :

Bx =
Fx

Ecx
=
ux
cx

(4)

According to numerical simulations of fully-nonlinear 2D and 3D wave packets in deep
and intermediate water depth, when Bx exceeds the value 0.85, the wave will inevitably
undergo breaking onset. If the crest fluid speed of a wave does not exceed 0.85 of its
crest speed, the wave will not break. This threshold value has been validated with the
experiments of [22]. [24, 22, 21] investigated the breaking onset of [3] against laboratory
measurements. They found the onset of breaking threshold to be robust for different types
of wave groups in deep and intermediate water. This approach seems to be promising
at providing a more universal criteria in deep and intermediate water. It has not been
applied to shallow water conditions though [3] suggests that it should be valid. This
would mean that even though the processes leading to wave breaking are different in deep
(wave group modulation) and shallow water (wave shoaling), the concept of energy flux
rate threshold could be valid in any water depth. This is precisely the question addressed
in the present study, we would like to assess the applicability in shallow water of the
breaking criteria introduced by [3]. For this, we shall use the fully nonlinear potential
flow (FNPF) model developped by [10] to analyse solitary breaking waves in 2D.
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The paper starts with the description of solitary wave breaking database generated
from the FNPF model. Preliminary results regarding the wave breaking threshold are
presented. The paper ends with a discussion regarding this study.

II – Methodology

II – 1 The FNPF model

FNPF model represents ‘numerical wave tank’ in which numerical experiments can be
set up and used to gain physical insight into complex wave phenomena. The FNPF model
is based on fully nonlinear potential flow theory and combines a higher-order boundary
element method (BEM) for solving Laplace’s equation at a given time and Lagrangian
Taylor expansions for the time updating of the free surface position and potential. Poten-
tial flow theory can quite well predict the physics of wave shoaling over a slope, up to and
into the early stages of breaking, before touchdown of the breaker jet on the free surface.
BEM techniques are efficient for representing wave propagation and overturning until the
wave surface reconnects [11]. [8] provides extensive validation of shoaling and breaking
solitary waves cases against laboratory data. The FNPF model of [10] provides accurate
predictions of height and location of breaking, and detailed characteristics of waves at
the breaking point can be determined. Because of the accurate comparison between the
model and the measured data, the FNPF model can be used as a reference to investigate
detailed characteristics of breaking waves. [33] uses the FNPF model as a standard of
accuracy. The results from this code are used to assess the applicability in shallow water
of the breaking criteria introduced by [3].

II – 2 Input wave

Solitary waves are often used as a simple model for studying propagation, shoaling,
and breaking of extreme waves in shallow water. Solitary waves closely model tsunamis
and can also be used to represent surf-zone waves [8, 9]. They are simple to deal with
in a FNPF model. Observations suggest that waves approaching a beach often resemble
solitary waves [18]. We are studying wave breaking generated by shoaling over a gentle
plane slope (Figure 1). Numerically exact solitary waves (obtained from the fully nonlinear
method by [28]) are used as incident waves in the constant depth region prior to the slope.

Figure 1 – Definition sketch of the numerical experiments with the FNPF model.
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II – 3 Computational domain

The numerical domain used to generate breaking waves is represented on Figure 1.
The depth of the flat region is h0 = 0.30m. The plane slope is varied from 2% to 12%.
Solitary waves of initial wave height H0/h0 = 0.5 to 0.67 are propagating in the domain.
By combining the different initial wave heights and slopes, we were able to generate more
than 50 cases of solitary breaking wave.

There are 461 nodes in the discretization, including 300 nodes on the free surface (with
initial spacing ∆x = 0.117m). The distance between nodes on the bottom is constant
over the constant depth region and this distance is reduced over the slope to increase the
resolution when depth decreases. On the surface, the nodes converge toward the crest
region during shoaling while the distance between nodes increases in the front and in the
back of the waves.

The breaking point is arbitrary defined as the crest location for which the free surface
slope becomes vertical in the wave front. Shortly after the slope exceeds the vertical,
numerical errors increase leading to instability of computations and the model blows up.

Figure 2 shows the results for a solitary wave of initial height H0 = 0.17m.

Figure 2 – Solitary wave breaking over a 5% slope from the FNPF model (with an initial
soliton height of H0=0.17m.

III – Results

We are investigating the applicability of Bx parameter in shallow water. Let’s define
BSW the equivalent of Bx in shallow water for the present configurations. To determine
the breaking parameter BSW at the free surface, at every point in the domain and at every
time step, we need to compute for every breaking cases, the ratio between the horizontal
fluid velocity at the crest (uc) and the phase speed c according to [3]. The crest is defined
here as the maximum surface elevation at each time step.

We performed a spatial cubic interpolation on the elevation and potential velocity
variables to obtain a better refinement of the crest until the breaking point. Also because
the temporal resolution vary at each time step, we interpolated on a regular time vector.
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The horizontal fluid velocity at the crest (uc) is computed from the velocity potential
φ, the working variable of the FNPF model, based on the potential theory :

uc =
dφ

dx
(5)

To compute BSW , this requires the phase velocity to be calculated instantaneously
everywhere in the domain and at every time step. At the location of the crest, the phase
speed is the crest velocity. The crest velocity c is then calculated based on a simple crest
tracking method : from the shift in time of the maximum surface elevation, we are able
to compute at each time step the ratio between the distance the crest has traveled (∆x)
over the time required to travel this distance (∆t) :

c =
∆x

∆t
(6)

Figure 3 presents for every cases the value taken by BSW at the moment of breaking
against the parameter S0 which is the surf similarity parameter of solitary wave defined
in [8] :

S0 = 1.521
s√
H0/h0

(7)

Figure 3 – BSW = f(S0) at breaking point for different slope and height with the
FNPF model. S0 is the surf similarity parameter of solitary wave defined in [8] :
S0 = 1.521s/

√
H0/h0.

According to the S0 values of each simulations, all the waves generated are of plunging
type. Our preliminary results show that most wave breaking occurs above the threshold
BSW = 0.85 which is in agreement with Barthelemy’s paper where they report that any
waves with a Bx above 0.85 will inevitably and quickly (a fraction of period) evolves
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toward breaking. Some waves break at lower values than BSW = 0.85. Waves that break
before BSW = 0.85 mostly propagates on the mildest slopes (between 7% and 10%). The
mean BSW is 0.86. 95% of the waves break above BSW = 0.80 and 85% of the waves
break with BSW within the range 0.80-0.90.

We note that the dispersion around the mean BSW value could be due to uncertainty
on the phase speed calculation. The simple procedure we used might lead to errors in the
determination of the crest velocity and constitutes a difficulty in the reliable verification
of this criterion. The time and spatial resolutions might not be sufficient to capture the
highly nonlinear and rapid process of wave breaking.

Figure 4 shows the values of BSW plotted against the time for every cases. We notice
on this figure that the evolution of BSW with time strongly varies depending on the
configuration. Cases with high BSW values at breaking (around 1) reach such rates very
rapidly. On the contrary, it seems that many cases that break with low BSW values (cases
corresponding to the mildest slopes), have a slower evolution of the BSW parameter before
breaking. We can also see that for some cases, BSW is not continuously increasing and
decreases a short time before breaking. This might be because the exact time of breaking
is not correctly captured. This suggest, that the exact time of breaking might not be
captured with a sufficient accuracy. Improving our detection method, with e.g. a better
time and spatial resolution would probably lead to a smaller dispersion in the BSW values.

Figure 4 – BSW against time. The darkest line is for the lowest S0. S0 increases with the
line becoming lighter.

IV – Conclusion

The threshold Bx = 0.85 defined by [3] allows to detect wave breaking within a very
short time before it actually happen (up to a fifth of a carrier wave period prior to a
breaking event) for deep and intermediate water. This criterion can be assimilated to a
"point of no return" for wave breaking. Our preliminary results suggest that the equivalent
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"point of no return" in shallow water is slightly lower than the one identified in deep and
intermediate water. The large majority of the waves break above BSW = 0.80.

It is also noticed that on the contrary to the results of [3] (figure 6), BSW values at
breaking are concentrated around their mean value. The dispersion around the mean BSW

is small and could be reduced by increasing the spatial and temporal resolutions. This
suggests that the mean BSW (very close to Bx = 0.85) could be used as an actual wave
breaking criterion in shallow water and not as a threshold for predicting wave breaking
as in deep and intermediate water.

It should be stressed that the stability of BEM simulations close to breaking strongly
depends on the parameters of the numerical scheme. Further effort therefore need to be
invested to increase the resolution to obtain a more accurate wave breaking onset threshold
in shallow water conditions over a larger type of breaking waves (surging, plunging and
spilling). Also the present simulations are in 2D. We would like to extend this study to
3D simulations.

This study is a first step towards an improved breaking threshold to be used in shallow-
water phase-resolving models. However, further efforts are needed to obtain a more ac-
curate value of BSW .
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