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Summary

The maximal power absorbed by a wave energy converter can be estimated from the
far-field behavior of the waves radiated by the device. For realistic estimates, constraints
must be used to enforce restrictions on the set of admissible motions when deriving the
maximal absorption width. This work is dedicated to the numerical computation of the
maximal absorption width under constraints for devices with several non-trivial degrees
of freedom. In particular, the method is applied to a model of a bulging horizontal wave
energy converter similar to the SBM Offshore S3 device.

Résumé

La puissance maximale absorbable par un système houlomoteur peut être estimée à
partir des vagues radiées en champ lointain par le système. Pour une estimation réaliste,
des contraintes doivent être appliquées sur l’ensemble des mouvements admissibles lors du
calcul de la largeur de capture maximale. Ce travail est dédié au calcul numérique de la
largeur de capture maximale sous contraintes pour des systèmes avec des degrés de liberté
non-triviaux. En particulier, la méthode est appliquée à un modèle de système houlomoteur
cylindrique se déformant en renflement, similaire au S3 de SBM Offshore.
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I – Introduction

During the design phase of a wave energy converter (WEC), several analytical and nu-
merical methods are available to estimate the power absorbable by the device. The one
discussed in this paper relates the far-field waves radiated by the device to the maximal
absorption width. Since it only requires the resolution of a few linear potential flow ra-
diation problems, it is one the of simplest methods available. It has been presented and
applied in [3, 8, 7, 11] among others.

By absorbable power, it is meant transmissible from the waves to a motion or defor-
mation of the WEC, disregarding the subsequent conversion of the energy. The problem is
only a fluid-structure interaction problem and the power take-off will not be discussed in
this paper.

In general for a body of nontrivial shape, the far field behavior must be computed
numerically with a Boundary Element Method (BEM) solver. Afterwards, the computation
of the maximum capture width requires to solve an optimization problem under constraints
which can be difficult to handle analytically in dimensions higher than one. The goal of
this work is the development and validation of a numerical tool to help the computation
of this value for any device with several degrees of freedom (dofs), including non-trivial
deformation degrees of freedom. To our knowledge, no previous work considered such a
general framework.

In the next section, the theoretical expression for the capture width is presented. In the
following section, some aspects of the implementation of the numerical computation are
briefly discussed. Then, the results of the optimization under constraint are discussed for
a simple buoy with two translational degrees of freedom. Finally, in the last section of this
paper, the method is applied to a model of a bulging horizontal cylinder similar to the
SBM Offshore S3 device [5].

II – Expression of the maximal absorption width

Let us consider a linear potential flow in the frequency domain. For the sake of simplicity,
all computations in this paper will be done assuming an infinite water depth. This paper
follows the conventions of [3] a and we refer to it for more details on the derivation of the
following formulas. In the far field, the radiated wave can be described by the complex-
valued Kochin function H(θ), where θ is a direction of interest. It can be related to the
complex-valued velocity potential Φ in cylindrical coordinates as

Φ(R, θ, z) = 4π

√
1

λR
H(θ)f0(z)ei(2π

R
λ
+π

4 ) +O

(
1

R
3
2

)
(1)

where f0 is a function of the vertical coordinate z only and λ is the wavelength of the
waves.

Since we consider a linear problem, the potential and the Kochin function can be decom-
posed as a sum of contributions from each of the degrees of freedom taken independently.

a. In particular, Newman in [11] uses a different convention for the definition of the Kochin functions :
HNewman = 4πkH, where k is the wave number. The convention for time dependence is also different :
x(t) = <

(
x̂Newmane

iωt
)

whereas it is x(t) = <
(
x̂e−iωt

)
in this paper.
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In frequency-domain, a motion of the body will be defined by ndof complex values âj re-
presenting the amplitude of the degree of freedom j. The phase of the complex value âj
is defined relative to the phase of the incoming wave. We can then write H =

∑ndof

j âjHj

where Hj is the Kochin function for a unit excitation of the dof j.

By writing an energy balance around a WEC [3, Eq. 4.21], we can derive an expression
for the absorption width. Assuming a WEC oscillating in waves with complex-valued dof
amplitudes â = (â1, . . . , ândof

) ∈ Cndof , the absorption width reads :

W (â, k, β) = 8πk=

(
ndof∑
j=1

âjH
∗
j (k, π + β)

)
− 8πk3

∫ 2π

0

∣∣∣∣∣
ndof∑
j=1

âjHj(k, θ)

∣∣∣∣∣
2

dθ , (2)

where = is the imaginary part, the star denotes the complex conjugate, k is the wave
number and β is the direction of the incoming waves (in radian).

Since the phase of âj is given relative to the phase of the incoming waves, the first
term of (2) depends on the difference of phase between the WEC motion and the incoming
waves. The second term of (2) is the total amount of energy lost by radiation by the WEC
in all directions and is independent of this difference of phase.

For a given motion of the WEC, this first term varies with the difference of phase

as a sine function between −8πk
∣∣∣∑j âjH

∗
j

∣∣∣ and 8πk
∣∣∣∑j âjH

∗
j

∣∣∣. When we are looking for

the best capture width, the difference of phase can be assumed to be optimal and the first
term maximal. We will denote this situation as the WEC being in phase with the incoming
waves.

The diffraction does not appear explicitly in (2). Physically, it can be understood by
the fact that no energy can be absorbed by a fixed non-radiating body. Mathematically,
we refer to [3, Eq. (4.20)].

The above expression relates a given motion of the WEC to the power absorbable by this
motion. The maximum absorbable power can be found as the maximum over all possible
motions of the body. The optimal capture width reads :

W optimal(k, β) = maxâ∈Cndof [W (â, k, β)] = maxâ∈R×Cndof−1

[
W in phase(â, k, β)

]
, (3)

where W in phase is defined as

W in phase(â, k, β) = 8πk

∣∣∣∣∣
ndof∑
j=1

âjH
∗
j (k, π + β)

∣∣∣∣∣− 8πk3
∫ 2π

0

∣∣∣∣∣
ndof∑
j=1

âjHj(k, θ)

∣∣∣∣∣
2

dθ . (4)

The analytical optimization of the difference of phase between the WEC and the incoming
waves reduces the dimension of the space of candidate motions by one. Indeed, since this
expression is independent on the global phase of (âj)j, one of the amplitude can be taken
as real in the optimization, that is (âj)j ∈ R× Cndof−1.

For a single dof (ndof = 1), the absorption width W is a quadratic function of |â|, where
â is the complex-valued amplitude of the dof. This function has a maximum |â|optimal that
reads (see also [11]) :

|â|optimal(k, β) =
1

2k2
|H(k, π + β)|∫ 2π

0
|H(k, θ)|2dθ

, W optimal(k, β) =
2π

k

|H(k, π + β)|2∫ 2π

0
|H(k, θ)|2dθ

(5)
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Using the assumption of a slender body, Newman [11] and Farley [7] have derived analytical
expressions for the maximal capture width for a deformation along a single degree of
freedom.

A generalization of (5) for several degrees of freedom can be found in [3, Eq. 4.24]. It
takes the form of a complex-valued linear system of ndof equations, since the function to
maximize has the form of a quadratic function of â.

In the rest of this paper, we will also use the following relation derived by [6] :

k

2π

∫ π

−π
W optimal(k, β) dβ = ndof, (6)

where ndof is the number of hydrodynamically independent degrees of freedom (that will
not be distinguished from the total number of degrees of freedom in this paper).

However, the amplitude at which this absorbed power is maximal is often not reachable
by the devices. The amplitude is constrained by, for instance, mooring for translation
motion or elastic properties of the material for a deformable WEC. The range on which
the electric system can extract energy can also constrain the “useful” amplitude of the dof.
In this paper, we are interested in this more realistic case where the maximal amplitude is
constrained.

For a single degree of freedom, the constraint can easily be taken into account in the
analytical expression (5) (see also [11]) :

|â|optimal(k, β) = min

(
1

2k2
|H(π + β)|∫ 2π

0
|H(θ)|2dθ

, |â|constr
)
, W optimal(k, β) = W (|â|optimal, k, β)

(7)
where |â|constr is the maximal admissible amplitude.

For several degrees of freedom, an optimization under constraint problem has to be
solved. Using (4), the optimization problem will happen in R× Cndof−1 ≡ R2ndof−1.

It might be possible to derive an analytical expression for the optimal capture width
under constrain as in the 1D case, at least for simple constraints. This has not be done in
this work, where we used an optimization algorithm to find the optimum.

III – Implementation

In [11], an analytical model had been used to compute the radiated wave field of an
elongated body, by making the approximation of a slender body. We have chosen here
instead to base our work on full 3D linear potential flow simulations using the open source
boundary element method solver Nemoh [4]. This will allow to directly use this method on
a larger variety of body shapes.

However, solving a 3D BEM problem might be relatively slow, particularly in compari-
son with an analytical model. According to the benchmark of [12], Nemoh is also noticeably
slower than its commercial concurrent WAMIT. In parallel of this work, an effort is being
made to speed up the computations with Nemoh in a refactored version under development
[1, 2] at UCD.
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After the Kochin functions have been computed by solving a linear potential flow pro-
blem, the maximum capture width must be found by solving an optimization problem under
constraint. They were solved using the off-the-shelf optimization tools from Scipy [9]. It
relies on the SLSQP (Sequential Least Squares Programming) algorithm as implemented
by [10].

The optimizations for several wave frequencies or several incoming wave directions are
“embarrassingly parallel” problems and can straightforwardly be run in parallel.

Since we want to maximize a quadratic function within a convex domain, no convergence
difficulty is expected for the optimization algorithm, as long as the constraint is smooth
enough. On cases with a low number of degrees of freedom, the solution of the optimization
algorithm has been validated by comparing with a brute force research of the optimum.

The computations were run on a high-end desktop from 2012 (Intel i7-3770K CPU) using
4 threads in parallel. Depending on the refinement of the mesh and the number of degrees
of freedom, the computations of the following results took from a minute to an hour.

In the course of the preparation of this paper, an attempt was made to reproduce the
slender bodies analytical results from [11] using the numerical code. Difficulties were en-
countered. Convergence problem with Nemoh have been noticed before (in [5]) for a cylinder
close to the free surface. Some more work is necessary to check whether the discrepancies
that we noticed are due to this known problem, to the hypothesis of a slender body or to
another problem in the implementation.

IV – Illustration on a simple test case

In the next paragraph, we will study the case of a simple buoy. We consider a vertical
cylinder of diameter 1 m and wet height 1 m. This body will be allowed to move in transla-
tion only, with two degrees of freedom (heave and surge). The rotation degrees of freedom
have be neglected for the sake of simplicity.

At first, the body is allowed to move in one degree of freedom at a time. If x̂ is the
complex-valued amplitude associated with the coordinate of the body x(t), then

|x̂| = max
t
|x(t)|.

For a single degree of freedom, the constraint on the maximal displacement of the body
can straightforwardly be expressed as a constraint on x̂ :

|x̂| ≤ A (8)

for some maximal amplitude A.
The dimensionless absorption width has been plotted on Figure 1 for several maximal

amplitudes of motion. For an axisymmetric problem, the relation (6) implies kW = ndof.
Since the buoy moving in heave is an axisymmetric problem, the dimensionless absorption
width without constraint is 1 for all incoming wave directions and all wavelengths. For
surge, the dimensionless absorption width is 2 (independently of the wavelength) for waves
traveling in the x-direction (β = 0, β = π), 0 for waves traveling in the y-direction (β = π

2
,

β = 3π
2

) and 1 on average over all wave directions (see also Figure 3).
When the motion of the body is constrained, the absorption width is lower. For high

wavelengths, reaching the absorption width of the unconstrained case would require large
motions of the body.
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Figure 1 – Dimensionless maximal absorption width of a floating vertical cylinder as a
function of the wavelength of the incoming waves for several constraints on the motion
of the body (maximal amplitudes A as in (8)). The incoming waves are traveling in the
direction of the x-axis. The body moves along a single degree of freedom (on top : surge,
on the bottom : heave).
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Figure 2 – Dimensionless maximal absorption width of a floating vertical cylinder as a
function of the wavelength of the incoming waves for several degrees of freedom and for
two different constraints on the motion of the body (in plain line : constraint (10) with
A = 0.5 m, in dotted line : unlimited motion). The incoming waves are traveling in the
direction of the x-axis.

The natural extension of the constraint (8) to several degrees of freedom is to limit the
displacement of the dof as

max
t
d(t) ≤ A , (9)

where d(t) =
√
x(t)2 + z(t)2 is the displacement of the body with respect to its rest

position. However, it is not straightforward to express the displacement d(t) as a function
of x̂ and ẑ. Thus, for the sake of simplicity, the constraint on the motion with two degrees
of freedom has been chosen instead as√

(max
t
x(t))2 + (max

t
z(t))2 =

√
|x̂|2 + |ẑ|2 ≤ A. (10)

Since
max

(
max
t
x(t)2,max

t
z(t)2

)
≤ max

t
d(t)2 ≤ (max

t
x(t))2 + (max

t
z(t))2

the constraint (10) is more restrictive that (9), in the sense that (9) is fulfilled whenever
(10) is.

In Figure 2 and Figure 3, the absorption width of the motion under two degrees of
freedom has been considered. The results are plotted for two constraints :
• in dotted line, the motion is without any constraint. The absorption widths of the

two individual degrees of freedom can be linearly summed to get the absorption
width of the case with two degrees of freedom.
• in plain line, the constraint is given by (10) with A = 0.5 m. This constraint intro-

duced a non-linearity in the model. The absorption width of the individual degrees
of freedom cannot be summed anymore. The total absorption width is just slightly
higher than the maximum of the individual absorption width.
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Figure 3 – Dimensionless maximal absorption width of a floating vertical cylinder as
a function of the direction of the incoming waves for several degrees of freedom and for
two different constraints on the motion of the body (in plain line : constraint (10) with
A = 0.5 m, in dotted line : unlimited motion). The wavelength of the incoming waves is
5 m.

Other constraints have been tested, such as

max
(

max
t
x(t),max

t
z(t)

)
= max (|x̂|, |ẑ|) ≤ A, (11)

which is less restrictive than (9). Results are qualitatively similar, although the numerical
output is much noisier. The reason is thought to be that the optimization algorithm assumes
a smooth constraint and the supremum norm of (11) is not as smooth as the 2-norm of
(10).

V – Application to a bulging cylinder

Finally, the code will be applied to a model of a bulging cylindrical wave energy converter.
It is meant to be a rough model of the S3, described in more details in [5]. This device is an
immersed horizontal cylinder made of an elastic material and filled with water. In waves,
the elastic membrane is deformed and an electroactive polymer can produce electricity.

In [5], the deformation modes of the cylinder are derived. In the present work, we will
consider simpler bulge deformation modes, for the sake of simplicity. The radius of the
cylinder r at abscissa x and time t is given by

δr(x, t) = r(x, t)− r0 = <

(
ndof∑
j=1

δ̂rj sin

(
j

2πx

L

)
e−iωt

)
(12)

where r0 is the radius at rest, δ̂rj is the complex amplitude of the mode j and L is the
length of the cylinder.
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Figure 4 – Dimensionless maximal absorption widths as a function of the wavelength
and the direction in the incoming waves for the bulging mode sin(2π x/L) with constraint
(13). The dashed gray line is the curve cos(β) where β is the incoming wave direction.

In the following computations, a cylinder of radius 0.2 m and length 10 m (those are the
dimensions of the small scale experimental model of [5]) is immersed such that its center
is at z = −0.3 m.

The computation under constraints requires an estimate of the maximal deformation
physically sustainable by the WEC. For the S3, this estimate requires the study of the
elastic properties of the material and is out of the scope of this work. For this paper,
an arbitrary constraint will be taken. The optimization algorithm currently in use has
been noticed to give more reliable results with a smooth constraint. Then, the following
constraint has arbitrarily been chosen :∑

j

∣∣∣δ̂rj∣∣∣2 ≤ (r0
2

)2
. (13)

Other constraints than (13) have been tested, in particular to try to limit directly the
maximum radius or its derivative. However, as for the floating buoy of Section IV, results
appear to be noisier when a supremum norm is used, probably due to the algorithm for
the optimization under constraints. More work is necessary to have a code able of handling
arbitrary constraints.

In Figure 4, a map of the absorption width under constraint for a single mode of de-
formation has been plotted. When the incoming waves travel in the same direction as the
cylinder (β = 0), the best absorption width is reached for wavelengths closeeto the wa-
velength of the deformation mode of the WEC (here that is λ = L). When the incoming
waves arrive sideways at the WEC, the wavelength at which the capture is maximal gets
lower. It corresponds to the wavelength of the body deformation mode as seen by the
transverse incoming waves cos(β)L where β is the incoming wave angle.
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Figure 5 – Dimensionless absorption width as a function of the wavelength of the incoming
waves. The colored lines correspond to the absorption width of the different degrees of
freedom taken individually, while the black line corresponds to the absorption width of
a cylinder with all four degrees of freedom. Dotted lines corresponds to cases without
constraint on the deformation. Plain lines corresponds to cases with constraint (13).

At shorter wavelengths, there are less angles at which the absorption width is non-zero.
However, when it is non-zero, its value is much higher than the typical value at higher
wavelength. This can be seen as an indirect consequence of (6).

In Figure 5 and 6, the absorption width with and without constraint has been plotted
for four sinusoidal modes of deformation and for the combination of all four.

In Figure 5, the absorption width of a mode is centered around the wavelength of the
wave corresponding to the wavelength of the deformation mode. This is true in particular
for constrained absorption widths. Unconstrained modes can present high absorption width
at other wavelengths (for instance the mode sin(4× 2πx/L) near λ = 0.8 – see dotted red
curve), but their disappearance in the constrained case (plain red line) seems to indicate
that they do not correspond to a realistic deformation.

Some high peaks can be seen for the unconstrained modes for low wavelengths. They
disappear in the constrained case and must thus be unrealistic deformations.

Finally, the black curve of the absorption width for the four dofs combined shows a
much lower value when the deformations are constrained, since the deformations of the
individual modes cannot pile up anymore. With the constraint (13), the total absorption
width seems close to the convex hull of the individual constrained absorption widths.

Since the total deformation is limited, adding more modes could have had no effect on
the total absorption width. Instead, since the deformation modes are effective for different
wavelengths of the incoming waves, they do not compete with each other. Then, adding
more modes just increases the range of wavelengths for which the cylinder can capture
energy.
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Figure 6 – Dimensionless absorption width as a function of the direction of the incoming
waves (in radian) for waves with wavelength L/2. The legend is the same legend as for
Figure 5 : the colored lines correspond to the absorption width of the different degrees
of freedom taken individually, while the black line corresponds to the absorption width
of a cylinder with all four degrees of freedom. Dotted lines correspond to cases without
constraint on the deformation. Plain lines correspond to cases with constraint (13). The
horizontal dashed gray line corresponds to the theoretical average value based on (6).

The maximal absorption width becomes higher for modes with lower wavelength of
deformations. This effect is partially due to the choice of the constraint (13) since it limits
only the radius of the cylinder. A more realistic constraint would also limit the derivative
of the radius with respect to x, thus reducing the absorption width of the modes with low
wavelengths.

In Figures 6, the absorption width has been plotted as a function of the direction of
the incoming waves, for the same degrees of freedom, for the wavelength corresponding
to half of the cylinder length. At this wavelength, the mode sin(2 × 2πx/L) in orange is
the most active, with the mode sin(1 × 2πx/L) in blue for wave coming sideways. Other
modes may contribute in the unconstrained case, but their contribution might require an
unrealistically large deformation, since they almost disappear when a constraint is applied.

In the unconstrained case, the total absorption width in dotted black line can be com-
pared with the theoretical average value based on (6) in dashed gray line.

VI – Conclusion

In this paper, a first exploration of the computation of the maximal absorption width
from the far-field radiation behavior of a WEC has been presented. The end goal of this
study is the development of generic numerical tools for the design of WECs, including
devices with non-trivial degrees of freedom.
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For a realistic modeling with this method, an upper bound for the body motion or
deformation has to be introduced in the computations. The constraints used in this paper
may not be totally meaningful from a physical point of view. The optimization under
constraint problem should be studied more closely to get a better understanding of the
best way to apply a realistic constraint. More realistic constraints could include not only
limitations of the amplitude of the motion, but also of its velocity.

This approach has been illustrated in this paper by an application to a rough model of
the SBM bulging cylindrical wave energy converter. More deformations modes should be
introduced in the model in the future (including for instance cosine modes of deformation
or the actual modes of the S3 as derived in [5]). Then parametric studies could be done
with this model to understand the role of the radius of the cylinder or of the depth at
which it is immersed.
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