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Résumé

La génération et propagation de vagues dans un solveur numérique pour fluides
visqueux sont des éléments essentiels pour réaliser des simulations précises dans le secteur
naval/offshore. Dans cette étude, le cas de propagation de vagues bidimensionnelles non-
linéaires est traité en considérant plusieurs formulations, le domaine périodique perme-
ttant de se focaliser uniquement sur les effets du solveur. La méthode de type capture
d’interface Volume of Fluid (VOF) est toujours utilisée mais deux algorithmes de convec-
tion sont testés (VOF compressible et IsoAdvector). Deux variations sont utilisées sur
l’équation de la quantité de mouvement, en considérant un fluide avec densité continue à
travers l’interface ou deux fluides par la methode Ghost Fluid qui applique une condition
de saut à l’interface. Les différentes combinaisons font l’objet d’une étude de convergence.

Summary

The wave generation and propagation in a viscous flow solver are essential elements
for accurate naval and offshore simulation. The study presents two-dimensional nonlinear
wave propagation in a periodic domain, which allows for investigating only the effect of
the solver. Various options are tested for the solver, first about the convection equation
of the volume of fluid (VOF) and then about the momentum equation. Two options are
available for the convection (compressible vof and isoAdvector) and two possibilities are
investigated for momentum solver; first considering a one-fluid conservative formulation
with continuous density over the interface and then a two-phase flow formulation using
the ghost fluid method (GFM) and jump conditions. All combinations between these
possibilities are investigated and convergence properties are established.
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I – Introduction

The wave propagation in a viscous flow is one of the important part of naval computa-
tional fluid dynamic (CFD) applications. However, in the two-phase finite volume method
(FVM) framework, it is still challenging to generate the precise desired wave and to limit
the dissipation in order to maintain the wave amplitude for the whole simulation. And
when this is achieved, the good energy conservation may lead to instabilities in the flow
disturbing the correctness of the solution. Furthermore, when computing the practical
order of convergence in space and time in a wave propagation problem, even if the dis-
sipation and stability of the solution is satisfactory, the order of convergence achieved is
often less than the expected theoretical values. The main reason for all these difficulties is
the necessity of free-surface modeling. As an interface treatment is required to reflect the
discontinuous property of the free-surface (or the multiphase interface) in the numerical
computation.

This paper aims to simulate two-dimensional wave propagation periodic problem using
different interface treatment schemes. The theories on the interface treatment scheme is
presented in section II. Section III and IV present respectively the simulation set-up of
periodic wave propagation and its analysis. The base viscous solver is open source library
package OpenFOAM (Version 5.0). Additional numerical implementations are from the
library package ‘foamStar’ which is the software developed with Bureau Veritas (BV) with
collaboration with Ecole Cnetrale de Nantes.

II – Mathematical model

II – 1 Typical two-phase flow model

In this section few mathematical models for incompressible two-phase flow are presented.
The typical incompressible two-phase flow model is derived based on conditional averaging
of two fluid. Following momentum and continuity equations is:

∂(ρu)

∂t
+∇•(ρuu)−∇•(µ(∇u))−∇u•∇µ = −∇pd − (g•x)∇ρ+ σκ∇α , (1)

∇•u = 0 , (2)

where, u is the continuous velocity field; ρ is continuous density field which has spatial
variation due to two fluids (ρair = 1.0 Kg/m2, ρwater = 1000 Kg/m2); µ is averaged
dynamic viscosity (µair = 1.0 × 10−5 Ns/m2, µair = 1.0 × 10−3 Ns/m2); pd is dynamic
pressure; σκ is surface tension coefficient and considered negligible (σκ = 0) in this paper.
The finite volume (FV) representation of Eq.(1) is:

∂(VPρu)

∂t
+
∑
f

(ρφfu)−
∑
f

(µ(∇u))−∇u•∇µVP = −∇pdVP − (g•x)∇ρVP . (3)

Where, P refers to owner cell’s properties; VP is the volume of cell P; ρφf is the mass flux
of a faces f constructing the cell P . The coupled equations Eq.(3) and Eq.(2) are solved
with PISO algorithm ([6], [9]) and explained detail in [8] and [14]. Note that density ρ
and mass flux ρφf should be calculated before the PISO loop.

The VOF method define the phase indicator function α as a volume fraction of water in
a cell. Thus, α = 1 at fully submerged cell and α = 0 in the air. From mass conservation
equation, the VOF convection equation can be derived as:
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∂(α)

∂t
+∇•(uα) +∇•(urα(1− α)) = 0 . (4)

Where, ur is relative velocity normal to the free-surface and the third term of LHS is
an artificial compression term ([4, 1]) which compress the VOF field to minimize the
smearing.

II – 2 Compressive VOF convection algorithm

The typical VOF convection algorithm which is also on the OpenFoam embedded solver
interFoam (incompressible, Newtonian two-phase flow solver) is presented. The Eq.(4)
can be transformed into FV representation with spatial discretization and off-centered
Crank Nicolson temporal discretization:

(V α)t+h − (V α)t

h
+ CCN

∑
f

[Ff + Frf ]t+h + (1− CCN)
∑
f

[Ff + Frf ]
t = 0 ,

Ff = φfαf Frf = φrfαf (1− αf ) ,

(5)

The value CCN is a Crank Nicolson coefficient where CCN = 0.5 yields classical Crank
Nicolson scheme and CCN = 1 yields Backward Euler scheme.

To solve the bounded and non-smeared VOF field, Eq.(5) is separated into two equa-
tions: ’Predictor step Eq.(6)’ and ’Corrector step Eq.(7)’.

(V α)∗ − (V α)t

h
+ CCN

∑
f

[Ff,upwind]
t+h + (1− CCN)

∑
f

[Ff,upwind]
t = 0 . (6)

(V α)t+h − (V α)∗

h
+ CCN

∑
f

[λFCorrect]
t+h + (1− CCN)

∑
f

[λFCorrect]
t = 0 . (7)

FCorrect = (Ff,HighOrder + Frf,HighOrder − Ff,upwind)
FTotal = Ff,upwind + λFCorrect .

(8)

Here, α∗ is a intermediate VOF field and λ is a limiter evaluated from MULES(Multidimensional
Universal Limiter for Explicit Solver, [8]) which limits the total flux and guarantees the
boundedness of the VOF field. The continuous density field and the mass flux are evalu-
ated for PISO algorithm.

ρ = αρwater + (1− α)ρair , (ρφ)f = ρwaterFTotal + ρair(φf − FTotal) . (9)

II – 3 VOF convection with IsoAdvector method

The algorithm of geometric VOF scheme ’IsoAdvector’ method is presented in this sub-
section. Instead of solving Eq.(5) in algebraic way, Roenby et al.([12]) developed a new
VOF convection method which uses the isosurface of a cell. From the mass conservation
equation, the following equation is satisfied for each cell i:

αi(t+ h) = αi(t)−
1

Vi

∑
faces=Fj

∫ t+h

t

∫
Fj

H(x, τ)u(x, τ)dSdτ . (10)
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Here, H(x, t) is a phase indicator function at a point and satisfies:

H(x, τ) =
ρ(x, τ)− ρair
ρwater − ρair

, αi =
1

Vi

∫
Vi

H(x, τ)dV . (11)

The physical meaning of the integration on LHS of Eq.(10) is that the total volume of
water moves across the face j of cell i during the time interval [t, t + h]. To simplify the
integral, constant face velocity during the time interval is assumed (Eq.(13)).

∆Vi,j(t, h) =

∫ t+∆t

t

∫
Fj

H(x, τ)u(x, τ)dSdτ , (12)

∆Vi,j(t, h) ≈ 0.5(φj(t) + φj(t+ h))

|Sj|

∫ t+∆t

t

Aj(τ)dτ . (13)

Aj(τ) =

∫
Fj

H(x, τ)dS . (14)

The Aj(τ) is equal to the time series of submerged area of each face j of cell i. The
main objective of IsoAdvector scheme is to calculate the time integration of Aj(τ). To
calculate the time variation of submerged area, IsoAdvector scheme construct the initial
isosurface in cell i. The constructed isosurface moves with constant velocity and eval-
uate the change of submerged area in mesh level. The detail algorithm on isosurface
construction, isosurface advection and bounding procedures are explained in [12, 13, 11].

II – 4 Two-phase flow model with ghost fluid method

Instead of using averaged two-phase momentum equation (Eq.(1)), another two-phase flow
model taking into account the discontinuous properties at the interface with Ghost Fluid
Method (GFM) is considered ([5], [15]). Two-phase flow is modeled like a single phase
flow (Eq.(15)), and the discontinuous dynamic pressure and density at the free-surface
are considered inside the gradient and Laplacian evaluation algorithm.

∂(u)

∂t
+∇•(uu)−∇•(ν(∇u))−∇u•∇µ = −1

ρ
∇pd , (15)

∇•u = 0 , (16)

The free-surface jump conditions for dynamic pressure and density are given as Eq.(17)
and Eq.(18), where the operator [−] stands for the jump of quantities at the interface.

[p] = 0 , [pd] = −[ρ](g•x) , (17)

[
1

ρ
pd] = 0 . (18)

Further details on derivations and implementations on the GFM can be found at [15] and
[16].
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III – Set-up

Four different combination of solvers based on the mathematical models presented in
previous section are investigated. For convenience, each solver are named ’Type A1 and
A2’ and ’Type B1 and B2’ and selected schemes are tabulated in Table 1.

Table 1: Definition of solvers

Solver VOF solver Momentum solver

Type A1 Compressive VOF Averaged two-phase
Type A2 IsoAdvector Averaged two-phase
Type B1 Compressive VOF GFM
Type B2 IsoAdvector GFM

III – 1 Simulation set-up

To investigate the ability of each solver in naval applications, a nonlinear wave propagating
to positive x direction in two-dimensional domain is considered. The initial wave velocities
and the free-surface positions are evaluated with stream function wave theory [10]. The
wave conditions used in previous study ([2]) are applied again and tabulated in Table 2.

The computational domain is exactly one wave length in x-direction. Figure 1 shows
the computational domain, boundary conditions and initial VOF field. The periodic
boundary condition is applied to ’Inlet’ and ’Outlet’ boundaries. For the ’bottom’ patch,
slip boundary condition is applied. For the ’Air’ patch, open air boundary condition is
applied. To measure the wave, 100 wave probes are installed uniformly from ’Inlet’ to
’Outlet’ boundary.

Second order Crank Nicolson temporal discretization scheme is used for all solver (Ta-
ble 1). Due to the stability reason, solver Type A1 and Type A2 used Crank Nicolson
discretization with off-centering parameter Coc = 0.95 which yields Crank Nicolson coeffi-
cient CCN = 1/(1 +Coc). In contrast, other solvers used classical Crank Nicolson scheme
(Coc = 1.0). The convection term of Compressive VOF equation is discretized with second
order accurate vanLeer flux limiter [7]. The convection term in the momentum equation
is discretized with second order upwind biased linear scheme, and diffusion terms are
discretized with central differencing scheme. Also, all gradient terms are discretized with
central difference scheme. To minimize the temporal uncertainty, 8 outer (SIMPLE) and
2 inner (PISO) correctors are used. For all variables the residuals were lower than 10−7.

Table 2: Wave condition

Item Unit Value

Depth (D) [m] 0.6
Period (T ) [s] 0.7018
Height (H) [m] 0.05753

Wave length (λ) [m] 0.8082
Wave stiffness (kA) 0.24
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Figure 1: Computational domain and boundary conditions

III – 2 Convergence study set-up

To check the convergence of each solver, a campaign of simulation with five different grids
is carried out with similar Courant number. The information on the grid and time step
(∆t) are tabulated in Table 3. The refinement factor is r = 2 for each level of grid except
for the coarsest grid. The uncertainty assessment has performed with the open access
tool developed by Eça and Hoekstra ([3]).

Table 3: Mesh for the convergence study (Courant number ≈ 0.17)

Case λ/∆x H/∆z T/∆t ∆x/∆z

Grid 1 15 3 50 2.8
Grid 2 25 5 100 2.8
Grid 3 50 10 200 2.8
Grid 4 100 20 400 2.8
Grid 5 200 40 800 2.8

IV – Results and Discussion

This section gives the result of convergence study on four different type of solvers (Table
1). Figure 2 shows the wave profile captured at time t = 10T, t = 20T, t = 30T and
t = 40T . Figure 3 and Figure 4 present the time averaged first harmonic wave amplitude
and phase velocity respect to the refinement level of the mesh (Table 3). The order
of convergence P and uncertainty U is evaluated for each type of solver and each time
averaged amplitude. No uncertainty assessment has performed for the phase velocity. The
summarized order of convergence and uncertainties respect to type of solver and time are
arranged on the Table 4.
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Figure 2: Free surface profile in time with Grid 5

Figure 3: Convergence study on time averaged amplitude
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Figure 4: Convergence study on time averaged phase velocity

Table 4: Summary of order of convergence and uncertainties of amplitude

Time Type A1 Type A2 Type B1 Type B2

Periods 01-10
P = 2.0
U = 0.4%

P = 2.0
U = 0.7%

P = 1.2
U = 1.0%

P = 1.1
U = 1.2%

Periods 11-20
P = 2.0
U = 1.3%

P = 1.8
U = 3.9%

P = 0.9
U = 6.1%

P = 0.9
U = 5.5%

Periods 21-30
P = 1.5
U = 2.6%

P = 1.8
U = 4.8%

P = 0.6
U = 22.8%

P = 0.5
U = 22.5%

Periods 31-40
P = 1.2
U = 6.4%

P = 1.8
U = 11.1%

P = X
U = 40.8%

P = 0.5
U = 30.6%

The averaged amplitude from the solvers using averaged two-phase momentum equa-
tion (Type A1 and Type A2) show the order of convergence larger than 1 and during
the first 10 periods second order convergence is achieved. The ’Type A2’ (IsoAdvector)
solver gives better conservation of amplitude than ’Type A1’ (Compressive VOF) solver.
However, the ’Type A2’ solver makes wiggles on the interface for the simulation longer
than 10 period. Also ’Type A2’ solver shows that this solver require at least 100 cell
for one wave length to obtain proper phase velocity. But it shows the increase of phase
velocity after 10 period.

The solvers using GFM algorithm (Type B1 and Type B2) show lower order of con-
vergence compare to the solver Type A1 and Type A2. The solver Type B1 and Type
B2 both showed the convergence for phase velocity but the converged phase velocity is
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smaller than the analytic one. The solver Type B1 and Type B2 both show a similar
large dissipation of wave amplitude in time and this requires more investigations.

V – ACKNOWLEDGMENT

This work has been performed in the framework of the Chaire Hydrodynamique et Struc-
ture Marines CENTRALE NANTES - BUREAU VERITAS.

References
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