
DÉCOMPOSITION DE DOMAINE POUR DES ÉQUATIONS DE TYPE
BOUSSINESQ LINÉARISÉES

DOMAIN DECOMPOSITION METHODS FOR LINEARIZED
BOUSSINESQ TYPE EQUATIONS

J.G. CALDAS STEINSTRAESSER(1,3), G. KEMLIN(2), A. ROUSSEAU(1)

joao.caldas@meric.cl ; gaspard.kemlin@inria.cl ; antoine.rousseau@inria.fr

(1)Inria, Team LEMON, Montpellier, France
(2)Inria Chile, Avenida Apoquindo 2827, Las Condes, Santiago, Chile
(3)MERIC, Avenida Apoquindo 2827, Las Condes, Santiago, Chile

Résumé

Nous présentons dans ce papier la dérivation de conditions aux limites transparentes dis-
crètes pour des équations de type Boussinesq linéarisées. Ces conditions sont non-locales en
temps et nous évaluons leur précision avec une discrétisation de Crank-Nicolson sur grille dé-
calée. Ensuite, nous utilisons ces conditions dans des méthodes de décomposition de domaine,
où elles deviennent locales en temps. Nous évaluons alors leur efficacité en les comparant avec
d’autres conditions aux interfaces. Enfin, nous reproduisons ce principe pour les équations non-
linéaires.

Summary

In this paper, we derive discrete transparent boundary conditions for a class of linearized
Boussinesq equations. These conditions happen to be non-local in time and we test numerically
their accuracy with a Crank-Nicolson time-discretization on a staggered grid. We use the derived
transparent boundary conditions as interface conditions in a domain decomposition method,
where they become local in time. We analyze numerically their efficiency thanks to comparisons
made with other interface conditions. Then, we apply the same ideas to nonlinear equations.

1

I – Introduction

Among the main challenges faced in the mathematical framework of coastal engineering is the
study of wave propagation in the nearshore area. One field of research in this topic makes use of
the Boussinesq equations for water of varying depth that describe the nonlinear propagation of
waves in shallow water. The work of Peregrine [17], Green and Naghdi [11] laid the basis for many
Boussinesq-type equations used nowadays. The dispersion properties of these equations have
been improved by Nwogu [16] for practical numerical simulation of ocean wave processes from
deep to shallow water. In this paper, we work on the equations derived by Nwogu and that can
be recalled as follows. Consider a three-dimensional wave field with surface elevation η (x, y, t)
over a non-constant water depth h (x, y) and with speed u (x, y, z (x, y) , t) = (u, v), respectively
the speeds along the x and y axis, defined at an arbitrary reference depth z (x, y) ∈ [−h (x, y) , 0],
that can be chosen in order to optimize the dispersion properties of the equations (see [16]).
Figure 1 provides a sketch where we represent these quantities. With τ being the bottom shear
stress, Nwogu obtained (1), which consists of a continuity equation and a momentum equation.
These equations have been used in a C/Matlab program known as the Boussinesq Ocean and
Surf Zone (BOSZ) model, developed by Roeber and Cheung [18].

ηt +∇ · [(h+ η)u] +∇ ·

[(
z2

2
− h2

6

)
h∇ (∇ · u) +

(
z +

h

2

)
h∇ (∇ · (hu))

]
= 0,

ut + (u · ∇)u+ g∇η + z
[z
2
∇ (∇ · ut) +∇ (∇ · (hut))

]
+ τ = 0.

(1)

x

y

z

u

v

η

h H

Figure 1: Definition of the quantities η, h, H, u.

To simplify the framework, we consider here the 1D equations and ignore the bottom shear
stress τ . We also consider a constant flat bottom h = h0. Thus, the total height H can be
recovered by the relation H = h0 + η. Then, we perform a linearization around the equilibrium
point (η̄, ū) = (0, 0) to get {

ηt + h0ux + h̃uxxx = 0, (2a)
ut + gηx + h̄uxxt = 0, (2b)

to which we now refer as the linearized Boussinesq equations. Here, h̃ and h̄ are constants
defined by

h̃ =

(
z2

2
+ h0z +

h20
3

)
h0, h̄ = z

(z
2
+ h0

)
. (3)

Using the value z = −0.53753 × h0 (the factor comes from the optimization of the dispersion
properties of the equations, see [16] for more details) and h0 = 1, we have that h̄ and h̃ are both
negative. Setting h̃ = 0, h̄ = −ε a small parameter, g = 1 and h0 = 1 leads to the formulation

2

of the linearized Green-Naghdi equations, for which discrete transparent boundary conditions
have been derived by Kazakova and Noble [13].

The first objective of the paper is to derive transparent boundary conditions for equations
(2a) – (2b). Indeed, this system is set on the whole space R and thus we need to restrict the
area of computation to a bounded domain for practical applications. This requires to find
suitable boundary conditions. We focus on transparent boundary conditions in order to let
waves escaping the domain without any reflection (a phenomenon that we observe for instance
with Dirichlet conditions). From a mathematical point of view, we set the problem as follows:
given a compactly supported initial data, one derives suitable conditions at the boundaries
so that the solution on the bounded domain coincides with the restriction to this domain of
the solution computed on the whole domain. In practice, this study can be done in either a
continuous or discretized framework. A review of these techniques can be found in [1] where
the authors build such conditions for the Schrödinger equation. In the linear case, the study
in the continuous framework is carried out by applying the Laplace transform in time and
adapt boundary conditions to keep solutions bounded. The Laplace-inverse transform of these
conditions results into non-local in time operators. The adaptation of this technique to the
discretized framework uses the Z-transform, which is the discrete equivalent of the Laplace
transform. Again, the numerical inversion of the obtained discrete conditions yields non-local
operators.

The second and main objective of the paper is to test the efficiency of the discrete transpar-
ent conditions as interface conditions in a domain decomposition method with the alternating
Schwarz method. The interest of this method lies in the possibilities, with few modifications
in the original code, to split the original computational domain and/or couple different models
(for instance farshore and nearshore). Our work can be seen as a step towards more efficient
coupling between different numerical models in coastal engineering. The main difficulty is then
to find suitable interface conditions to exchange information between the different subdomains
so that the convergence is achieved as fast as possible.

This paper is organized as follows. In the first section, we apply the study from [3, 5, 13] to
the linearized Boussinesq equations and obtain discrete transparent boundary conditions. Then,
we provide some numerical tests to evaluate the accuracy of such conditions before implementing
them in a domain decomposition method. In the second section, we briefly recall the idea
of the additive Schwarz method that we are going to use before going on with the adaptation
of transparent boundary conditions as interface conditions. We conclude with some numerical
experiments to evaluate their efficiency. Finally, we present the tests we did with the nonlinear
Serre equations to go on to the nonlinear framework for domain decomposition methods. The
first two sections of the paper are available in a more detailed way in [7].

II – Derivation of transparent boundary conditions

First, we introduce the initial value problem that we seek to solve using transparent boundary
conditions (TBC):

ηt + h0ux + h̃uxxx = 0, ∀ x ∈ R, t > 0,

ut + gηx + h̄uxxt = 0, ∀ x ∈ R, t > 0,

u(x, 0) = u0(x), η(x, 0) = η0(x), ∀ x ∈ R,
u(x, t) −−−−→

x→±∞
0, η(x, t) −−−−→

x→±∞
0, ∀ t > 0.

(4)

The goal of TBC is to find boundary conditions for a finite domain (for instance [0, L]) such
that the solution on this domain coincides with the restriction to this domain of the solution of

3

problem (4). Hence, the problem we will work on is
ηt + h0ux + h̃uxxx = 0, ∀ x ∈ [0, L], t > 0,

ut + gηx + h̄uxxt = 0, ∀ x ∈ [0, L], t > 0,

u(x, 0) = u0(x), η(x, 0) = η0(x), ∀ x ∈ [0, L],

+ transparent boundary conditions at x = 0 and x = L.

(5)

TBC

Figure 2: Transparent boundary conditions means that the solution we want to compute on
[0, L] is a picture of the solution on R restricted to [0, L].

Note that it is possible to decouple equations (2a) – (2b) to obtain an equation on u only.
Taking the cross derivatives of (2a) and (2b), we get

utt + h̄uxxtt − gh0uxx − gh̃uxxxx = 0. (6)

Thus, system (2a) – (6) is equivalent to (2a) – (2b). We can also note a fourth order space
derivative. Therefore, we will need to derive four conditions.

In this section, we follow the steps proposed in [3, 5, 13] to derive discrete TBC that are
adapted to the discretized problem. We end this section with some numerical tests to analyze
the efficiency of the obtained conditions.

II – 1 Deriving discrete transparent boundary conditions

We introduce here the derivation of discrete TBC (DTBC) for the discretized problem. These
are boundary conditions directly derived from the discretized problem. We adapt here the
method used in [3] for the Schrödinger equation, in [5] for the KdV equation and in [13] for the
linearized Green-Naghdi equations. It follows four main steps:

1. Discretize the equations (2a) and (2b).

2. Use the Z-transform on the problem on the complementary set.

3. Find the conditions at the two boundaries in the Z-space.

4. Use the inverse Z-transform to find the transparent boundary conditions.

Discretization

The first step is to find a discretization in time on a staggered grid. Let δx be the spatial-step
and δt be the time-step. We build this grid such that J = L/δx and xj = jδx:

0 = x0 < x1 < x2 < · · · < xJ−1 < xJ = L.

j < 0 and j > J denote nodes that are out of the domain we want to work on. The time tn then
stands for nδt. Using a Crank-Nicolson scheme, (2a) yields

ηn+1
j+ 1

2

− ηn
j+ 1

2

δt
+

h0
2

(
un+1
j+1 − un+1

j

δx
+

unj+1 − unj
δx

)

+
h̃

2

(
un+1
j+2 − 3un+1

j+1 + 3un+1
j − un+1

j−1

δx3
+

unj+2 − 3unj+1 + 3unj − unj−1

δx3

)
= 0.

(7)

4

Note that the finite differences operator used for the third spatial derivative is centered around
j + 1

2 .
Discretizing (2b) is straightforward:

un+1
j − unj

δt
+

g

2

ηn+1
j+ 1

2

− ηn+1
j− 1

2

δx
+

ηn
j+ 1

2

− ηn
j− 1

2

δx

+

h̄

δt

(
un+1
j+1 − 2un+1

j + un+1
j−1

δx2
−

unj+1 − 2unj + unj−1

δx2

)
= 0.

(8)

Problem on the complementary set

To solve the initial value problem (5), we assume that the initial conditions u0 and η0 are
compactly supported in [0, L]. The derivation of the DTBC associated to our problem can be
done by studying the problem on the complementary set of [0, L]:

ηt + h0ux + h̃uxxx = 0, ∀ x ∈ R\[0, L], t > 0,

ut + gηx + h̄uxxt = 0, ∀ x ∈ R\[0, L], t > 0,

u(x, 0) = 0, η(x, 0) = 0, ∀ x ∈ R\[0, L],
u(x, t) −−−−→

x→±∞
0, η(x, t) −−−−→

x→±∞
0, ∀ t > 0.

(9)

Z-transform

The second step is to compute the Z-transform of (9). The Z-transform of the sequence (un)n>0

is defined as a function of the complex variable z:

∀ |z| > R > 0, û(z) = Z {(un)} :=
∑
n>0

unz
−n, (10)

where R is the convergence radius of the series. By applying the Z-transform to (7) and (8), we
obtain the following recurrence (in space) relation for û after eliminating the dependence in η̂:

− gh̃

δx4
ûj+2 +

(
h̃

δx2
s(z)2 − gh0

δx2
+ 4

gh̃

δx4

)
ûj+1 +

(
s(z)2

(
1− 2

h̄

δx2

)
+ 2

gh0
δx2

− 6
gh̃

δx4

)
ûj

+

(
h̃

δx2
s(z)2 − gh0

δx2
+ 4

gh̃

δx4

)
ûj−1 −

gh̃

δx4
ûj−2 = 0,

(11)

where
s(z) =

2

δt

z − 1

z + 1
. (12)

Finally, by solving this recurrence relation and finding conditions at the boundaries for û that
we can translate back with the inverse Z-transform, we find two conditions at each interface,
with {un} =

(
u0, . . . , un

)
:

Left

Γl
1 ({un}) := un0 − (Y5 ∗ u1)n + (Y7 ∗ u2)n = 0,

Γl
2 ({un}) := un0 − (Y6 ∗ u2)n + 2(Y9 ∗ u3)n − (Y8 ∗ u4)n = 0,

(13)

Right

Γr
1 ({un}) := unJ − (Y1 ∗ uJ−1)

n + (Y3 ∗ uJ−2)
n = 0,

Γr
2 ({un}) := unJ − 2(Y1 ∗ uJ−1)

n + (Y2 ∗ uJ−2)
n − (Y4 ∗ uJ−4)

n = 0,
(14)

5

where (Y n
i) for i = 1, . . . , 9 are coefficients that depend on the equation parameters and that

can be computed offline before starting to solve: we don’t need to recompute them at each time
step. ∗ also denotes the discrete convolution:

∀ i ∈ J1, 9K, (Yi ∗ uj)n :=
n∑

m=0

Y m
i un−m

j . (15)

Hence, it is important to notice that these conditions are not local in time. For more details,
and especially the expression of the (Y n

i), one can refer to [7].

II – 2 Numerical results

We present here some numerical results to analyze the efficiency of the conditions we just derived.
We used the following values for the different parameters we can vary (h̄ and h̃ resulted from
h0 and z):

L = 1 m, g = 9.81 m · s−2, δt = 0.001 s, δx = 0.01 m,

h0 = 1 m, z = −0.53753× h0, h̄ = −0.39306 m2, h̃ = −0.05973 m3.
(16)

For the initial conditions, we used

u0 ≡ 0, η0(x) = exp

(
−400×

(
x− L

2

)2
)
. (17)

The results are presented in Figure 3. They are quite satisfying as the solution computed with
DTBC fits well the reference solution computed on a larger domain. We used the error en as
relative error at time tn and eT as global l2 error in time:

en =
‖uref(·, tn)− unum(·, tn)‖l2

‖uref(·, tn)‖l2
, eT =

√√√√δt×
nmax∑
n=1

(en)2. (18)

We used a trapezoidal rule to compute the discrete l2-norm in space and the reference solution
is computed on a larger domain, with the same transparent conditions. The error is expected to
be small by definition of the transparency of the conditions. For T = 1, we get eT = 4.5 · 10−6.

III – Application to domain decomposition methods

The discrete boundary conditions (13) and (14) will be used in this section as interface boundary
conditions (IBC) in a domain decomposition method (DDM). We briefly describe the DDM that
we are going to use before presenting analysis and numerical results.

III – 1 The Schwarz method

Domain decomposition methods are used to split a domain Ω, on which we want to solve a given
problem, in multiple domains Ωi, that can possibly overlap. Then, we can solve the problem
in each domain. Hence, one must find functions that satisfy the PDE in each domain and that
match with its neighbours on the interfaces, in a sense that has to be defined. The main difficulty
of domain decomposition methods lies in the definition of efficient conditions at the interface
between subdomains.

The original DDM was developed by Schwarz in 1870 [19] and consists in an iterative method:
the solution in the i-th subdomain Ωi is computed as the limit of a sequence uki , k > 0. At each
iteration k, we solve the problem in each subdomain with boundary conditions at the interfaces
imposed using functions from the other subdomains. We will consider here the additive Schwarz

6

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x

u
(·,

t)

t = 0.5

uref
u

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x

u
(·,

t)

t = 1.0

uref
u

Figure 3: Snapshot at different times of the reference solution uref (computed on a larger domain
with the transparent conditions at the boundaries) and the solution u computed with the same
transparent conditions.

method (ASM) in which the interface conditions are always constructed using solutions uk−1
j

(j 6= i) from the previous step in the neighbour subdomains. Therefore, at each interface between
two subdomains Ωi and Ωj , the IBC in Ωi is

Bi

(
uk+1
i

)
= Bi

(
ukj

)
. (19)

Note that it is possible to impose several interface conditions when Ωi has several neighbours.
Initially, the operators Bi were Dirichlet conditions: Bi(u) = u. For more details on the Schwarz
method, the reader can refer to [9, 14, 15].

We now look for an operator Bi inspired from the DTBC we derived in the previous section.
Without loss of generality, we consider the domain Ω = [0, L] divided into two subdomains Ω1

(left subdomain) and Ω2 (right subdomain) that can possibly overlap. Ω is discretized into N
nodes, while Ω1 and Ω2 are discretized into N1 and N2 nodes. The nodes in the subdomains
coincide with the nodes in Ω. The interface conditions B1 and B2 will have to be such that:

• At each Schwarz iteration, there is a unique discrete solution un,ki , at each time-step, in
each subdomain.

• The solution in each subdomain will have to converge (in the sense of Schwarz) to the
solution on Ω restricted to this subdomain.

Note that, as problem (5) is a time-dependent problem, we will perform the Schwarz method at
each time-step. To avoid any confusion between the iteration in the Schwarz method and our
time-dependent problem, the word iteration and the integer k will refer to the Schwarz algorithm
whereas time-step and n, m will refer to the evolution in time of the problem we are solving.

III – 2 A Schwarz method with transparent conditions at the interface

From [12], we know that transparent boundary conditions are very good candidates for interface
conditions in DDM. Thus, the TBC we derived in the previous section might inspire us to
set up interface conditions in an additive Schwarz method. We recall that we look for discrete
interface conditions, so that all the future reasonings will be done with the discrete equations and

7

conditions. If we focus on the right interface of the left domain, we recall that the transparent
boundary conditions are {

Γr
1

({
un+1
1

})
= 0,

Γr
2

({
un+1
1

})
= 0.

(20)

A first heuristic is to use the left-hand-side with un+1,k
2 to provide a right-hand-side for the

computation of un+1,k+1
1 . With

{
un+1
1

}k
=
(
u01, . . . , u

n
1 , u

n+1,k
1

)
where all the um1 for 0 6 m 6 n

have been computed by the Schwarz algorithm at the previous time-steps, we have Γr
1

({
un+1
1

}k+1
)
= Γr

1

({
un+1
2

}k)
,

Γr
2

({
un+1
1

}k+1
)
= Γr

2

({
un+1
2

}k)
.

(21)

Assuming we reached convergence at previous time-steps, we have um1 = um2 at the nodes in the
interface zone for 0 6 m 6 n. Hence, the values of um1 and um2 cancel each other and the IBC
becomes (for the right boundary of the left domain)

un+1,k+1
1,J1

− Y 0
1 · un+1,k+1

1,J1−1 + Y 0
3 · un+1,k+1

1,J1−2 = un+1,k
2,J2,1

− Y 0
1 · un+1,k

2,J2,1−1 + Y 0
3 · un+1,k

2,J2,1−2,

un+1,k+1
1,J1

− 2Y 0
1 · un+1,k+1

1,J1−1 + Y 0
2 · un+1,k+1

1,J1−2 − Y 0
4 · un+1,k+1

1,J1−4 = un+1,k
2,J2,1

− 2Y 0
1 · un+1,k

2,J2,1−1 + Y 0
2 · un+1,k

2,J2,1−2 − Y 0
4 · un+1,k

2,J2,1−4,

(22)
where J2,1 = N1+N2−N − 1 is the index such that the node J2,1 of the right domain coincides
with the node J1 = N1 − 1 of the left domain. The operator defined on each side of this system
will be denoted as B1, so that the IBC becomes

B1

(
un+1,k+1
1

)
= B1

(
un+1,k
2

)
. (23)

It is worth noting that the operator (23) used in (22) is local in time, contrarily to the operators
Γr
1,2. Similarly, the IBC for the left boundary of the right domain is

un+1,k+1
2,0 − Y 0

5 · un+1,k+1
2,1 + Y 0

7 · un+1,k+1
2,2 = un+1,k

1,O1,2
− Y 0

5 · un+1,k
1,O1,2+1 + Y 0

7 · un+1,k
1,O1,2+2,

un+1,k+1
2,0 − Y 0

6 · un+1,k+1
2,2 + 2Y 0

9 · un+1,k+1
2,3 − Y 0

8 · un+1,k+1
2,4 = un+1,k

1,O1,2
− Y 0

6 · un+1,k
1,O1,2+2 + 2Y 0

9 · un+1,k
1,O1,2+3 − Y 0

8 · un+1,k
1,O1,2+4,

(24)
where J2 = N2 − 1 and O1,2 = N −N2 is the index such that the node O1,2 of the left domain
coincides with the node 0 of the right domain. Again, we rewrite this system as

B2

(
un+1,k+1
2

)
= B2

(
un+1,k
1

)
. (25)

Remark 1. Let us notice that the interface conditions need at least 5 nodes in the overlap zone
and that it does not allow a non-overlapping ASM. It is not really an issue as the number of
nodes required in the overlap zone is small and does not depend on the mesh size.

Finally, the ASM along with these interface conditions reads

Γl
1

({
un+1
1

})
= 0, Γl

2

({
un+1
1

})
= 0, left,

un+1,k+1
1 = f1

(
un1 , u

n−1
1

)
, interior,

B1

(
un+1,k+1
1

)
= B1

(
un+1,k
2

)
, right,

B2

(
un+1,k+1
2

)
= B2

(
un+1,k
1

)
, left,

un+1,k+1
2 = f2

(
un2 , u

n−1
2

)
, interior,

Γr
1

({
un+1
2

})
= 0, Γr

2

({
un+1
2

})
= 0, right,

(26)
where fi stands for the discrete equation from the numerical scheme applied to the interior of
domain i.

8

III – 3 Numerical results

We end this section with numerical results obtained with the implementation of an additive
Schwarz method to solve the linearized Boussinesq equations. We used the same parameters
than in the previous tests (16). What we are interested in here is the number of Schwarz
iterations required by the DDM (26) to converge to the reference solution (given by the solution
computed on the domain Ω with discrete transparent conditions at the boundaries). We will
use the following stopping criterion:

en,kDDM 6 ε, (27)

where ε = 10−12 and

en,kDDM =

√√√√√δx

 J1∑
j=0

(
unref,j − un,k1,j

)2
+

J2∑
j=0

(
unref,O1,2+j − un,k2,j

)2. (28)

Again, O1,2 is the index on the mono-domain of the node corresponding to the first node of the
right domain. To study the efficiency of this method, we analyse its convergence at fixed points
in time and compare our conditions at the interface to the classical Dirichlet conditions.

Results are presented in Table 1 for the minimum overlap size. They are very satifying as
we can see that our interface conditions make the Schwarz algorithm converge in 2 iterations
only, where the Dirichlet interface conditions require several hundreds of iterations. As these
conditions correspond to the fastest possible convergence (2 iterations), it is not necessary to
study the influence of the size of the overlap zone nor the efficiency of a global Schwarz algorithm
as it will not converge in less than 2 iterations.

t TBC Dirichlet

0.25 2 604

0.5 2 612

0.75 2 546

1.0 2 556

Table 1: Number of iterations required for convergence in the ASM. We used, for the subdomains,
N1 = 88 and N2 = 18 so that the overlap zone is of size 5 (we have N = 101 from (16)).

IV – Towards transparent boundary conditions for nonlinear problems

Considering the efficiency of these discrete transparent boundary conditions when used at the
interface in a domain decomposition method, we thought that the next step would be to use
them for solving nonlinear equations. For convenience and by lack of time, we chose to consider
the nonlinear Serre equations as a nonlinear solver was already available to us and we could
focus on the implementation and the test of the boundary conditions. Applying the same ideas
to the nonlinear Boussinesq equations is subject to further study.

IV – 1 Serre equations

The Serre equations are used to describe the propagation of strongly nonlinear waves in shallow
water. In 1D, with a flat bottom, these equations have the following form in the variables (h, u):ht + (hu)x = 0,

ut + uux + ghx −
1

3h

(
h3
(
uxt + uuxx − (ux)

2
))

x
= 0.

(29)

9

This formulation can be found in [8]. The goal here is to derive TBC for these equations by
linearizing them and then use the coefficients of the linearized equations as boundary conditions
for the nonlinear equation. After linearisation, the exact same work that we did in the previous
sections can be followed and we obtain similar discrete boundary conditions, except that this
time the convolution coefficients (Y n

i) are different because the equations are different. Moreover,
when using the conditions in a domain decomposition method, it happens that they are exactly
the same than (22) and (24), just with different coefficients. The details of the computations
are not exposed here.

IV – 2 Numerical results

Transparent boundary conditions

In this paragraph, the goal is to implement and test the TBC as boundary conditions. To this
end, we ran the solver twice: once on a big domain and once on a small domain. Results are
available in Figure 4 and Figure 5 below. We used two different sets of initial conditions and
parameters:

1. A solitary solution, described in [8],

h(x, t) = a0 + a1sech2(κ(x− ct)), u(x, t) = c

(
1− a0

h(x, t)

)
, (30)

with the following parameters:

h0 = a0 = 1 m, a1 = 0.1 m, δt = 0.05 s, δx = 0.757 m,

g = 9.81 m · s−2, κ =

√
3a1

2a0
√
a0 + a1

, c =
√
g (a0 + a1).

(31)

2. A gaussian distribution

h(x, 0) = h0 + 0.1× exp

(
−400×

(
x− L

2

)2
)
, u(x, 0) ≡ 0, (32)

with the following parameters

h0 = 1 m, L = 3 m, δt = 0.001 s, δx = 0.06 m, g = 9.81 m · s−2. (33)

It is not surprising to see that the TBC are not totally transparent as we used convolution
coefficients that were computed from the linearized version of the nonlinear Serre equations.
What is more striking is that the convolution coefficients computed from the discretized Boussi-
nesq equations are more efficient than the one from the Serre equations, even if both do not
seem to work as some reflection is observed. This issue is still under investigation.

Domain decomposition

Here again we measured the consistency error (28) generated by the DDM. Results are presented
in Table 2. We can see that if the solitary wave seems to be a case were both interface conditions
are pretty efficient, the gaussian case is solved faster with the TBC than with Dirichlet as
interface conditions. Again, using the Yi coefficients from the Boussinesq equations seems to be
more efficient than using the coefficients from the linearized Serre equations.

10

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

·10−2

x

u
(·,

t)

t = 0.2

uref
u

Figure 4: Discrete transparent boundary conditions for the gaussian case, with the Yi coefficients
computed from the linearized Boussinesq equation.

−40 −20 0 20 40

0

0.1

0.2

0.3

x

u
(·,

t)

t = 0

uref

−40 −20 0 20 40

−0.2

−0.1

0

0.1

0.2

0.3

x

u
(·,

t)

t = 12

uref
u with Yi from Boussinesq

u with Yi from Serre

Figure 5: Discrete transparent boundary conditions for the solitary wave. We computed the co-
efficient for the convolutions in two different ways. (Left) Initial condition. (Right) Yi computed
with the linearized Serre equations vs Yi computed with the linearized Boussinesq equations.

Case Dirichlet TBC

Serre Boussinesq

Gaussian 120 ∼ 160 18 9
Solitary 11 8 8

Table 2: Convergence of the additive Schwarz method, for a precision of ε = 10−15, for an
overlap size of 5.

11

V – Conclusion

In this paper, we have been using discrete transparent boundary conditions for a class of Boussi-
nesq equations. As expected these conditions (non-local in time) provide very satisfying results
with respect to the wave reflection at boundaries. When implemented in a domain decomposi-
tion framework, the new conditions happen to be both very efficient and local in time, which
provides the best possible framework for the simulation in large domains using decomposition
techniques. Adapting this idea to nonlinear equations gives less impressive results but still, the
convergence of the domain decomposition has been enhanced.

References

[1] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schaedle. A Review of Transpar-
ent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger
Equations. Communications in Computational Physics, 4:729–796, 2008.

[2] A. Arnold. Numerically Absorbing Boundary Conditions for Quantum Evolution Equations.
VLSI Design, 1998.

[3] A. Arnold and M. Ehrhardt. Discrete Transparent Boundary Conditions for the Schrödinger
Equation. Rivista di Matematica della Università di Parma, 6, 2001.

[4] A. Arnold, M. Ehrhardt, and I. Sofronov. Discrete transparent boundary conditions for the
Schrodinger equation: Fast calculation, approximation, and stability. Communications in
Mathematical Sciences, 1, 2003.

[5] C. Besse, M. Ehrhardt, and I. Lacroix-Violet. Discrete Artificial Boundary Conditions for
the Korteweg-de Vries Equation. Numerical Methods for Partial Differential Equations,
2015.

[6] J. G. Caldas Steinstraesser, R. Cienfuegos, J. D. Galaz Mora, and A. Rousseau. A
Schwarz-based domain decomposition method for the dispersion equation. 2017. https:
//hal.inria.fr/hal-01617692/document, accepted in Journal of Applied Analysis and
Computation.

[7] J. G. Caldas Steinstraesser, G. Kemlin, and A. Rousseau. A domain decomposition method
for linearized Boussinesq-type equations. 2018. Preprint, available at https://hal.inria.
fr/hal-01797823.

[8] R. Cienfuegos and J. Carter. The kinematics and stability of solitary and cnoidal wave
solutions of the Serre equations. European Journal of Mechanics B - Fluids, 30(3):259–268,
2011.

[9] M. J. Gander. Schwarz methods over the course of time. Electronic Transactions on
Numerical Analysis, 31:228–255, 2008.

[10] J.-F. Gerbeau and B. Perthame. Derivation of Viscous Saint-Venant System for Laminar
Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems - Series
B, 1(1):89–102, 2000.

[11] A. E. Green and P. M. Naghdi. A derivation of equations for wave propagation in water of
variable depth. Journal of Fluid Mechanics, 78(2):237–246, 1976.

[12] C. Japhet and F. Nataf. The Best Interface Conditions for Domain Decomposition Methods:
Absorbing Boundary Conditions. In Absorbing Boundaries and Layers, Domain Decompo-
sition Methods: Applications to Large Scale Computations, pages 348–373, New York, 2001.
L. Tourrette and L. Halpern (eds.), Nova Science Publisher, Inc.

12

https://hal.inria.fr/hal-01617692/document
https://hal.inria.fr/hal-01617692/document
https://hal.inria.fr/hal-01797823
https://hal.inria.fr/hal-01797823

[13] M. Kazakova and P. Noble. Discrete transparent boundary conditions for the linearized
Green-Naghdi system of equations. 2017. https://arxiv.org/pdf/1710.04016.pdf.

[14] P.-L. Lions. On the Schwarz Alternating Method I. In First International Symposium on
Domain Decomposition Methods for Partial Differential Equations, pages 1 – 42, Philadel-
phia, 1988. R. Glowinski, G.H. Golub, G.A. Meurant, J. Périaux (eds.), SIAM.

[15] P.-L. Lions. On the Schwarz Alternating Method III: A variant for Nonoverlapping Subdo-
mains. In Third International Symposium on Domain Decomposition Methods for Partial
Differential Equations, pages 202–223, Houston, 1989. T.F. Chan, R. Glowinski, J. Péri-
aux, O. Widlund (eds.), SIAM.

[16] O. Nwogu. Alternative Form of Boussinesq Equations for Nearshore Wave Propagation.
Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6):618–638, 1993.

[17] D. Peregrine. Long waves on a beach. Journal of Fluid Mechanics, 27:815–827, 1967.

[18] V. Roeber and K. F. Cheung. Boussinesq-type model for energetic breaking waves in
fringing reef environment. Coastal Engineering, 70:1–20, 2012.

[19] H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Vierteljahrss-
chrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.

13

https://arxiv.org/pdf/1710.04016.pdf

	Introduction
	Derivation of transparent boundary conditions
	Deriving discrete transparent boundary conditions
	Numerical results

	Application to domain decomposition methods
	The Schwarz method
	A Schwarz method with transparent conditions at the interface
	Numerical results

	Towards transparent boundary conditions for nonlinear problems
	Serre equations
	Numerical results

	Conclusion

