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Résumé

Dans le but de modéliser les effets dissipatifs induits par la dissipation visqueuse interne
et le frottement sur le fond affectant la propagation des vagues, les termes dissipatifs
dérivés par Dias et al. [6] et Dutykh et Dias [8] sont ajoutés aux équations non-linéaires de
Zakharov [23]. La condition d’imperméabilité sur le fond est modifiée pour rendre compte
de la présence d’une couche limite au fond [14, 8]. Le modèle visco-potentiel résultant est
présenté et validé par l’application à trois cas tests analytiques ou expérimentaux : (1) la
décroissance d’une onde stationnaire linéaire, (2) l’atténuation d’une onde solitaire et (3)
l’atténuation de vagues régulières se propageant sur une marche sous-marine. Les résultats
des simulations montrent un bon accord avec la théorie pour l’atténuation de vagues en
profondeur d’eau inifinie et finie, ainsi qu’un bon accord avec les mesures expérimentales.

Summary

With the objective of taking into account energy dissipation through bulk viscosity
and bottom friction in a potential flow model, free surface dissipative terms derived by
Dias et al. [6] and Dutykh and Dias [8] are added to the nonlinear Zakharov equations
[23], and the impermeable bottom boundary condition is modified to take into account
the presence of a boundary layer [14, 8]. The visco-potential flow model is presented and
validated with the application of three analytic or experimental test cases: (1) decay of
a linear standing wave, (2) attenuation of a solitary wave, and (3) attenuation of regular
waves propagating over a submerged step. The simulation results agree well with the
theory of wave attenuation in infinite and finite depth, as well as with the experimental
measurements.
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I – Introduction

Potential flow theory, which assumes an inviscid fluid and irrotational flow, often gives
good results for water wave propagation modeling and is therefore a commonly used ap-
proach. However, it does not contain natural dissipation terms that may cause a decrease
in the wave amplitude and a modification of the speed and shape of the waves in finite
depth or over long propagation distances. Aside from wave breaking, three main pro-
cesses lead to wave energy dissipation [13]: near-surface dissipation (caused by surface
tension), internal dissipation by viscous stresses (or bulk viscosity), and interactions with
solid boundaries (bottom and/or lateral wall friction). In intermediate and shallow wa-
ter conditions, waves induce significant horizontal velocities near the bottom, and taking
into account the effects of bottom friction becomes essential to reproduce correctly the
wave characteristics and to study morphodynamics, including estimating accurately the
bottom shear stress and the induced sediment transport fluxes.

Different theoretical estimations of wave damping have been derived depending on the
dominant sources of energy dissipation: in infinite depth, only bulk viscosity is accounted
for, whereas in finite depth, the effects of solid boundaries must also be considered. Lamb
[11] derived the decay rate for a periodic wave of amplitude a in infinite depth for small
values of viscosity. The amplitude decreases exponentially in time:

a(t) = a(t = 0) e−2νk2t (1)

where k is the wave number and ν is the kinematic viscosity. Biesel [2] then derived an
expression for wave damping in finite depth, and Hunt [9] added the effects of lateral walls
in an experimental wave channel. More recently, Antuono and Colagrossi [1] derived a new
approximation of the decay rate of gravity waves in a viscous fluid using the linearized
Navier-Stokes equations, removing the assumption of infinite depth, and relaxing the
assumption of small viscosity. In deep water and at first order, the obtained decay rate
corresponds to that of Lamb [11]. However, the second-order term in the development is
negative, showing that the first-order solution of Lamb [11] overestimates the decay rate.
In finite depth, the differences are even more important since the solution of Lamb [11]
does not consider dissipation by bottom friction.

Visco-potential models aim to take into account viscous effects without resolving the
full Navier-Stokes equations by adding dissipative terms to the potential flow equations.
With viscosity, corrective terms are added to the free surface boundary conditions to
satisfy the new zero normal and tangential stress conditions [e.g. 6, 16, 10]. These solutions
exhibit the same decay rate as Lamb [11] in the limit of long waves and small viscosity by
taking into account the energy dissipation caused by bulk viscosity. Liu and Orfila [14]
and Dutykh and Dias [8] additionally derived a new kinematic bottom boundary condition
for the velocity potential with a non-local term in time using a boundary layer correction
approach to take into account the effects of bottom friction (no-slip boundary condition).
Boussinesq-type models have been derived from this new set of visco-potential equations
[e.g. 12].

Here, the visco-potential equations are solved directly by restating them in terms of
the boundary conditions to get a Zakharov-like set of equations taking into account bulk
viscosity and bottom friction (described in part 2). Three analytical and experimental
test cases are simulated with the derived numerical model including the attenuation of:
(1) viscous standing waves [1], (2) a viscous solitary wave propagating over a flat bottom
[15], and (3) regular waves propagating over a submerged step [18].

2



II – Model description

II – 1 Mathematical visco-potential flow model

Assuming irrotational flow of an inviscid and homogeneous fluid with constant density,
potential flow theory is used. By additionally assuming a non-overturning free surface, the
free surface boundary conditions can be rewritten as a function of the free surface position
η(x, t) and potential Φ̃(x, t) = Φ(x, η(x, t), t), where x = (x, y), obtaining the Zakharov
equations [23]. Here, these equations are supplemented with dissipative terms, modeling
the dissipation due to bulk viscosity, following the work of Dias et al. [6] and Dutykh and
Dias [8]. These terms are derived considering that vorticity has to be introduced in the
model to verify the zero tangential stress condition at the free surface. These terms were
derived assuming linear waves, but [6] conjectured these expressions could be used in the
nonlinear model as well when the viscosity is small:

∂η

∂t
= −∇HΦ̃.∇Hη + w̃(1 + (∇Hη)2) + 2ν∆Hη, (2)

∂Φ̃

∂t
= −gη − 1

2
(∇HΦ̃)2 +

1

2
w̃2(1 + (∇Hη)2)− 2 ν

∂2Φ

∂z2
, (3)

where ∇H and ∆H are the horizontal gradient and Laplacian operators, respectively.
In shallow water, the predominant source of dissipation is bottom friction. By applying

a no-slip condition at the bottom, the interior flow must be corrected to take into account
the vertical rotational part of the velocity induced in the boundary layer [14, 8]. The
impermeable boundary condition at the bottom (for a flat bottom, here) is replaced by:

∂Φ

∂z
(z = −h) = −

√
ν

π

∫ t

0

∂2Φ
∂z2

(x, z = −h, τ)
√
t− τ

dτ. (4)

The influence of the viscosity is not instantaneous. The effect of the boundary layer is
cumulative in time but weighted in favor of the current time.

II – 2 Numerical model

In this work, the model is limited to one horizontal dimension (i.e. x = x). The numerical
implementation, in a Fortran code called Misthyc, includes:

• high-order finite difference schemes to calculate horizontal spatial derivatives,

• an explicit four-step, fourth-order Runge-Kutta scheme (with a constant time step)
to integrate in time,

• and a spectral method in the vertical (using a base of Chebyshev polynomials of
maximum order NT ) following Tian and Sato [21] to solve the Laplace boundary
value problem for the velocity potential in the entire domain.

For a more detailed description of the model, see Yates and Benoit [22] and Raoult et al.
[20]. The time integral in the bottom boundary condition (Eq.(4)) is evaluated assuming
that ∂2Φ

∂z2
(x,−h, τ) is constant over each (small) time step ∆t. The term ∂2Φ

∂z2
(x,−h, τ) is
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stored at each time step, for all the nodes of the domain, which may be computation-
ally expensive in terms of both memory and CPU time if the domain is large and the
integration time is long.

Additional complexities in implementing this term appear when there are relaxation
zones for wave generation because the solution imposed in the relaxation zone does not
take into account viscous effects. To avoid this problem, the viscous terms are applied
outside of the relaxation zones, with a smooth transition to avoid a spatial discontinuity.
However, when the bottom friction is large in shallow water or when high values of the
viscosity are simulated, instabilities often develop at the end of the transition zone. The
limit of stability depends on the water depth and the viscosity, and these values must be
explored further.

III – Results

The visco-potential flow model is validated by applying it to three test cases: (1) a linear
simulation to study the amplitude decay of a standing wave evolving over a flat bottom for
two relative water depths, (2) a nonlinear simulation of laboratory measurements of the
propagation of a solitary wave over a flat bottom, attenuated by bottom friction, and (3)
a nonlinear simulation of the dissipation of regular waves propagating over a submerged
step in small-scale experiments.

III – 1 Attenuation of a standing wave

The first test case consists of simulating linear standing waves that are dissipated due to
the effects of bulk viscosity and bottom friction. Antuono and Colagrossi [1] (AC2013
hereafter) derived an accurate approximation of the damping rate from the linearized
Navier-Stokes equations for waves propagating in finite depth in a viscous fluid for a
wide range of Reynolds numbers. Here, simulations of standing waves with an amplitude
a = 0.05 m, in constant depth h = 1 m are compared to the theoretical solution. The
periodic domain is one wavelength long (L) and regularly discretized with ∆x = L/100
and NT = 7.

The temporal evolution of the total kinetic energy of the fluid is defined as:

Ec(t) =
1

2
ρ

[∫
x

Φ(z = η, t)
∂η

∂t
(t) dx+

∫
x

Φ(z = −h, t) ∂Φ

∂z
(z = −h, t) dx

]
, (5)

where the first term is the free surface contribution and the second term is the bottom
contribution.

Two combinations of the viscosity (ν), or Reynolds number, Re = h
√
gh/ν, and

relative water depth (kh) are presented here (see Table 1). For each combination, two
linear simulations were completed to evaluate the influence of bottom friction: one with
only the bulk viscosity terms activated, and a second with both the bulk viscosity and
bottom friction terms. For a given Reynolds number, the dissipation is expected to

Simulation kh L(m) Re ν (m2/s) ∆x (m) ∆t (s)
1 π 2 500 0.006264 0.02 (L/100) 0.00567 (T/200)
2 π/12 24 500 0.06264 0.24 (L/100) 0.0775 (T/100)

Table 1: Non-dimensional, physical and numerical parameters for the two simulations.
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increase when the relative water depth decreases and when the bottom friction term
becomes increasingly dominant.

In some cases, small wavelength oscillations in the free surface elevation appear when
the bottom friction term is applied. The simulations were stabilized by applying a low-
pass filter to the variable ∂2Φ

∂z2
(x, z = −h), retaining only the first ten Fourier modes.

In deep water conditions (kh = π), the effects of bottom friction are negligible, and
the simulation results with and without bottom friction are superimposed (Figure 1a).
The decay rate derived by Lamb [11] overestimates the energy dissipation in comparison
to the solution proposed by AC2013, in particular for small Reynolds numbers (high
viscosity). As previously stated, Lamb’s theory overestimates the damping rate obtained
by AC2013 because of the existence of negative higher order terms in AC2013’s solution.
The simulation results agree well with Lamb’s theory since the bulk viscous terms were
derived using the same small viscosity assumption to neglect terms of order o(ν).

In the shallow water limit, the differences between the simulations with and without
bottom friction become significant (Figure 1b). The damping increases with bottom
friction, causing a decrease in the wave amplitude and propagation speed, as seen by the
phase shift between the curves. The simulation that includes only the effects of bulk
viscosity again agrees well with Lamb’s theory, while the simulation that also includes
bottom friction agrees well with the solution proposed by AC2013. For small relative
water depths, the bottom friction term contributes significantly to wave dissipation and
cannot be neglected to reproduce correctly the amplitude decay of the standing wave.

III – 2 Amplitude decay of a solitary wave

The second test case simulates the propagation of a solitary wave over a flat bottom
(h0 = 0.15 m), following the experiments of Liu et al. [15]. In the experiments, the wave
is generated by a piston-type wavemaker, propagates over a flat bottom, and then shoals
on a slope. Acoustic gauges in the wave flume record the evolution of the free surface
elevation in the flat-bottom zone and in the shoaling zone (black triangles in Figure
2). The numerical simulations examine the flat-bottom zone, in a domain extending from
x = 0 m to x = 25 m (slope beginning at x = 19.88 m), with a regular mesh (∆x = 0.0075
m), andNT = 7. Since the numerical model is not able to simulate run-up at the waterline,
a minimal depth (h1 = 0.01 m) is set, and the simulations are stopped before the wave
arrives at the reflective right boundary.

The initial condition is a solution of the fully nonlinear Euler equations for a solitary
wave, computed with the algorithm of Clamond and Dutykh [3] for the solitary wave
amplitude measured at the first gauge (x = 6.5 m). The smallest (a = 0.01365 m) and
largest (a = 0.06135 m) wave amplitudes tested by [15] are simulated here (Table 2).

These nonlinear simulations take into account the effects of bulk viscosity using the
viscous correction terms derived following linear theory. Dias et al. [6] hypothesized that
these terms can be generalized to the fully nonlinear equations, and this hypothesis is

a (m) ε ∆t (s) CFL
0.01365 0.091 0.006 1
0.06135 0.409 0.0052 1

Table 2: Parameters for the two simulations of the solitary wave, showing the wave
amplitude a, wave steepness ε = a/h, time step ∆t, and CFL number, defined as CFL =
C∆t/∆x (with C given by the algorithm of Clamond and Dutykh [3]).
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(a) kh = π

(b) kh = π/12

Figure 1: Evolution of the normalized kinetic energy of the system (Eq.(5)) as a function
of nondimensional time (t∗ = t

√
g/h) for Re = 500 (ν = 0.006264 m2/s), and relative

depths (a) kh = π (deep water) and (b) kh = π/12 (shallow water).

tested here by comparing the propagation of solitary waves with small (ε = 0.091) and
then non-negligible (ε = 0.409) nonlinearities (ε = a/h).

In the flat-bottom region, the amplitude of the solitary wave decreases due to the
combined effects of dissipation by bulk viscosity and bottom friction (Figure 3). The
influence of the different sources of energy dissipation on the decay rate is shown in Figure
3. Without viscosity (ν = 0 m2/s), the wave amplitude remains constant. The simulations
with only the bulk viscosity terms added (slip bottom condition), with ν = 7.10−6 m2/s,
show only a weak amplitude decay and are nearly superimposed on the simulations without
viscosity. When the bottom friction term is added (no-slip bottom condition), the solitary
wave amplitudes decrease significantly. This effect is more pronounced for larger wave
heights that induce larger horizontal velocities at the bottom.
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Figure 2: Bathymetry, initial free surface elevation, and positions of wave gauges (trian-
gles) in the Liu et al. [15] experiments.

The value of the viscosity required to best fit the experimental data (ν = 7.10−6 m2/s,
black line, Figure 3) is slightly higher than the kinematic viscosity of water (ν = 10−6 m2/s,
dark blue line, Figure 3). Using a Boussineq model to simulate these experiments, Liu
et al. [15] reproduced the decay rate of the experiments with a viscosity of 10−6 m2/s
when taking into account the effects of the boundary layers on the wave flume walls. Here
the dissipation from the lateral walls is not taken into account, which likely explains the
improvement in the comparison to the experiments when a larger value of the viscosity is
simulated. The same optimal value of viscosity (ν = 7.10−6 m2/s) is used in the simula-
tions for both wave heights, showing the insensitivity of the dissipation term to the wave
non-linearity for these wave conditions.

Figure 3: Decrease in the solitary wave amplitude along the wave flume for (a) ε = 0.091
and (b) ε = 0.409, showing the experimental data (red circles) and the numerical results
without viscosity, ν = 0 m2/s (light blue line), with ν = 10−6 m2/s pure slip bottom
condition (green line), with ν = 10−6 m2/s no-slip bottom condition (dark blue line), and
with ν = 7.10−6 m2/s no-slip bottom condition (black line) .
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III – 3 Attenuation of regular waves propagating over a step

The last test case also uses the nonlinear version of the model to simulate the propagation
of regular waves over a vertical submerged step, based on the small-scale experiments
performed by E. Monsalve at the ESPCI (Ecole Supérieure de Physique et de Chimie
Industrielle de la ville de Paris) [18]. The goal of this test is to study the generation,
propagation, and dissipation of high-order harmonics over a step, in particular focusing
on the second harmonic. The domain is divided into two zones: zone (I), the deeper
region, and zone (II), the shallower region over the step. The subscripts (I), (II) will be
used to represent the wave and water depth characteristics in the two zones. The second
harmonic can be decomposed into two components: (1) bound waves that propagate
at the same celerity as the fundamental mode, with frequency 2f1 and wave number
twice the fundamental wave number (2k(II)

1 = 2k(f1, h
(II))), and (2) free waves with

the wave number corresponding to the linear dispersion relation for the frequency 2f1

(k(II)
2 = k(2f1, h

(II))) that propagate at the corresponding celerity. These two components
interact, causing a spatial modulation of the second harmonic amplitude with a beat
length [17]:

D− =
2π

k
(II)
2 − 2k

(II)
1

(6)

In the experiments, waves are generated by a flap wavemaker, and strong nonlinearities
are created at the vertical step at x = 0 m, transitioning between the deep water region
(h(I) = 6.5 cm) and the shallow water region (h(II) = 2.0 cm). At the right end of the
domain (from x = 0.85 m), an absorbing beach of slope 8% is constructed to prevent
wave reflection. The free surface deformation is measured with high spatial and temporal
resolution using a non-intrusive method, called Fourier Transform Profilometry [4].

In the numerical model, the vertical step is modeled with a hyperbolic tangent,
with a transition of slope 85 degrees to avoid creating a discontinuity at the step (see
inset in Figure 4). The numerical domain is the same as the experimental domain
(x ∈ [−0.38 m; 0.85 m]), with the addition of a Lgen-wide relaxation zone for wave
generation and a Labs-wide relaxation zone for wave absorption (Figure 4). The width
of the relaxation zones are Lgen = L

(I)
1 and Labs = 2L

(II)
1 . Waves are generated with a

Dirichlet boundary condition for the potential computed using linear wave theory. The
amplitude of the incident wave was not measured in the experiments (only the motion of
the wave maker was prescribed), so a wave amplitude was determined to fit qualitatively
the experimental data before the step. For an incident wave frequency of f1 = 1.9837
Hz, the wave amplitude is estimated to be a = 3.2 mm, and wavelength (from the linear
dispersion relation) is L(I)

1 = 0.334 m in depth h(I) and L(II)
1 = 0.2112 m in depth h(II).

The domain was irregularly meshed with ∆x = L
(I)
1 /100 far from the step and a refine-

ment of ∆x/2 near the step, with NT = 7. The time step is ∆t = 0.025 s ≈ T1/200 for a
maximum CFL=1.

For these small-scale experiments, the impacts of surface tension are important because
surface tension (σ) modifies the linear dispersion relation [7]:

ω2 =

(
1 +

1

Bo

)
gk tanh(kh), (7)

where Bo = ρg/(σk2) is the Bond number quantifying the ratio between gravity effects
and surface tension effets. If Bo� 1, surface tension effects can be neglected. The beat
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Figure 4: Numerical model domain and bathymetry for the submerged step test case. The
inset shows a zoom of the hyperbolic tangent form of the step transition in the bottom
elevation.

length of the second harmonic is expressed as a function of the difference between the
wave numbers of the free and bound components (Eq.(6)). In the shallow region over
the step (in water depth h(II)), the Bond numbers corresponding to k(II)

1 and k
(II)
2 are

Bo = 158 and Bo = 29, respectively (Table 3). Surface tension impacts short waves
with wavelengths on the order of centimeters, and the wave lengths associated with the
second harmonic over the step are less than 10 cm. The influence of surface tension on
their associated wavelength is small (Table 3), but important enough to modify the beat
length.

To take into account the effects of surface tension in the numerical model, the dy-
namic free surface boundary condition (1DH version of Eq.(3)) is modified with a term
proportional to the curvature of the free surface [e.g. 5]:

∂Φ̃

∂t
= −gη − 1

2

(
∂Φ̃

∂x

)2

+
1

2
w̃2

(
1 +

(
∂η

∂x

)2
)
− 2 ν

∂2Φ

∂z2
+
σ

ρ

∂

∂x

 ∂η
∂x√

1 +
(
∂η
∂x

)2

 . (8)

These nonlinear simulations take into account the effects of bulk viscosity and surface
tension (σ = 0.071 N/m). To compare the simulations to the experimental data, the
free surface elevation time series are decomposed into the amplitudes of the first five
harmonics (Figure 5). The optimal value of the bulk viscosity ν was sought to reproduce
the amplitude of the second harmonic (Figure 5). The optimal value ν = 4.10−5 m2/s
is higher than viscosity of pure water, likely due to the fact that only bulk dissipation is
simulated, whereas the effects of bottom friction may be important.

By including the effects of surface tension and bulk viscosity, the model reproduced well
the generation of higher order harmonics on the step, the second harmonic beat length,

σ (N/m) k
(II)
1 (rad/m) L

(II)
1 (m) k

(II)
2 (rad/m) L

(II)
2 (m) D− (m)

0 29.65 0.2118 70.95 0.08855 0.5393
0.071 29.54 0.2127 69.11 0.09090 0.6264

Table 3: Wave number and wavelength of the first and second harmonics with the asso-
ciated beat length for the water depth h(II) = 2.0 cm, and for surface tension σ = 0 N/m
and σ = 0.071 N/m.
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Figure 5: Simulated (solid line) and measured (dashed line) spatial evolution of the first
five harmonic amplitudes for f1 = 1.9837 Hz (using viscosity ν = 4.10−5 m2/s and surface
tension σ = 0.071 N/m in the simulation). The experimental data is averaged across the
wave channel to compare to the 1DH simulations, and the colored shaded zones indicate
the standard deviation of the measurements.

and, in general, the observed amplitude dissipation (Figure 5). However, the simulations
still slightly overestimate the observed decay in amplitude of the first harmonic, even with
an optimal viscosity ν = 4.10−5 m2/s greater than that of pure water.

Bottom friction may have an important role in the dissipation of low frequency waves
in shallow water. Taking into account the effects of bottom friction may correct the over-
estimation of the viscosity and improve the agreement with the experiments. Therefore,
the bottom friction term was applied in the numerical model in the entire domain outside
of the wave generation zone. However, this did not give satisfactory results in the region
around the vertical step since the bottom friction term was derived assuming a flat bot-
tom. Therefore, the no-slip condition was applied only in the shallow water region. To
prevent a discontinuity in the bottom boundary condition, the viscosity in the bottom
friction term was gradually increased in space to the target value. With the optimal value
of viscosity required to reproduce the amplitude decay in the experiments, numerical in-
stabilities eventually appear in the viscosity transition zone. Therefore, only simulations
taking into account the effects of bulk dissipation are shown here.

Finally, the high wave dissipation observed in the experiments may also be an artifact
of the experimental procedure that requires a perfectly clean free surface to avoid addi-
tional wave damping (from interactions between capillary-gravity waves and Marangoni
waves that develop on the surface film, see Przadka et al. [19]).

Additional simulations at a range of wave frequencies (not shown here) demonstrated
that the optimal value of the bulk viscosity must be adapted for each frequency. Overall,
the model reproduces well the experimental data, including the generation of high-order
harmonics and their subsequent evolution and attenuation due to bulk viscosity effects.
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IV – Conclusions

Viscous dissipation was introduced in a nonlinear potential flow model deriving a visco-
potential system of equations that contains: (1) two additional terms in the free surface
boundary conditions to take into account the predominant contribution of the vortical
component of the velocity, (2) the modification of the bottom boundary condition to take
into account the presence of a boundary layer. The linear version of the visco-potential
model reproduces well the decay of a linear standing wave, in comparison to the analytical
solution of [11] for infinite depth and [1] for finite depth. In addition, simulations with
the nonlinear version of the model agree well with experimental measurements of the
decay of a solitary wave propagating over a flat bottom and the propagation and decay of
higher-order harmonics generated at a nearly vertical step. Current work focuses on the
numerical implementation of the bottom friction term, in particular for variable bottom.
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