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Summary

Sloshing tests are performed with a rectangular tank filled with a large number of vertical cylin-
ders, in a regular arrangement. The cylinders are bottom-mounted and run through the free surface.
The tank is harmonically oscillated in surge at frequencies around the natural frequency of the first
sloshing mode. The free surface elevation at the tank end and the hydrodynamic loads are measured.
The experimental RAOs of the free surface elevation are compared with numerical values obtained
from idealizing the cylinder cluster as an anisotropic porous medium, and following a modal approach.
Quadratic damping terms are introduced in the modal equations to account for energy dissipation due
to flow separation at the cylinders. Experimental and numerical values of the damping coefficient are
also compared. Good agreement is obtained.

Résumé

Des essais de ballottement sont effectués avec une cuve rectangulaire remplie d’un grand nombre
de cylindres verticaux. Les cylindres sont fixés au fond et percent la surface libre. Le cuve est soumise
à des mouvements de translation, à des fréquences voisines de la fréquence propre du premier mode de
ballottement. Les mesures consistent en l’élévation de surface libre (à la paroi) et les efforts hydrody-
namiques. Un modèle théorique est proposé où la cuve est assimilée à milieu poreux anisotrope, et où
une approche modale est appliquée pour représenter le ballottement. Un amortissement quadratique
est introduit dans les équations modales pour exprimer la dissipation d’énergie due aux effets visqueux
sur les cylindres. Un bon accord est obtenu entre essais et calculs, pour la fonction de transfert de
l’élévation de surface libre, et pour l’amortissement hydrodynamique.
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1 Introduction

There has been a strong interest, in coastal engineering, for wave transformation and decay through
interaction with marine vegetation like seaweed, kelp or coral canopies. In experiments and numerical
models these obstacles are often idealized as regular arrays of vertical cylinders (e.g. see Lowe et al.
2005, Augustin et al. 2009, Mei et al. 2011). A thorough review can be found in Chen et al. (2016).
Recently further investigations, reported in Arnaud et al. (2016), have been performed at Seatech in
Toulon. In all of these experiments the cylinder diameters are small compared with the wavelengths,
typically of the order of 1 %.

When waves propagate through such dense arrays of vertical cylinders they decay in amplitude, as
a result of friction and flow separation, but they also undergo other modifications like partial reflection
and shortening of the wavelength. To describe these phenomena numerically different routes have been
followed. One approach is to consider the cylinder array as an homogeneous porous medium and to
introduce into the Bernoulli equation extra inertial and dissipative terms, still relying on potential
flow theory (Sollitt & Cross 1972, Yu & Chwang 1994). When dissipative effects are discarded this
leads to the following dispersion equation

ω2 S = g k tanh kh (1)

with ω the angular frequency, k the wavenumber, h the waterdepth and S = 1+Cm (1− τ)/τ , Cm an
added mass coefficient and τ the porosity (water volume divided by total volume).

In Molin et al. (2016) some experiments are reported which were undertaken to verify the applica-
bility of this dispersion equation. These experiments did not consist in running regular waves through
cylinder arrays in a canal, alike in Arnaud et al. (2016), but in sloshing tests: a rectangular tank
filled with vertical cylinders is undergoing forced horizontal motion around the natural frequency of
the first sloshing mode. When resonance is attained it means that the oscillation frequency and twice
the length of the tank are linked by the dispersion equation.

Figure 1: The tank on the Hexapode.

Figure 1 shows the experimental set-up: the tank is 1.2 m long, 0.3 m wide, the waterheight is
0.235 m (alike in the Seatech experiments). Different cylinder diameters were tested (2 cm, 3.2 cm,
5 cm) and different porosities, from about 70 % up to 90 % through varying the number of cylinders,
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in a staggered arrangement. Both the emerging case and the fully submerged case (with different
cylinder heights) were covered.

The dispersion equation derived from these experiments was compared with equation (1) and with
other approaches based on linearized potential flow theory, accounting individually for all cylinders.
It was found that none of them worked really well and a new approach was proposed, where one
considers the fluid domain to be anisotropic, and starts from writing the linearized Euler equations as

S Ut = −1

ρ
px (2)

S Vt = −1

ρ
py (3)

Wt = −1

ρ
pz − g z (4)

Ux + Vy +Wz = 0 (5)

with the S coefficient only in the horizontal momentum equations, at variance with previous investi-
gations. Then the following dispersion equation was obtained

ω2
√
S = g k tanh

(
kh/

√
S
)
, (6)

and turned out to provide the best fit with the experiments (with Cm = 1, as expected for circular
cylinders).

In this paper we use results from the same experiments as in Molin et al. (2016) and we aim at
calculating the sloshing response in the tank. We adopt the same starting equations as just written
above. Then we follow a modal approach similar to the method presented in Molin et al. (2002) where
linearized potential flow theory is used and the dissipative effects due to viscous effects are introduced
as linear and quadratic damping terms in the modal equations. Because of space limitations only the
emerging case at the intermediate diameter (3.2 cm) is considered.

2 Theoretical model

Figure 2: Geometry.

Figure 2 shows the geometry of the problem. The length of the tank is L, its width is B, the
waterheight is h, the coordinate system (x, y, z) has its origin at a bottom left corner. The tank is
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filled with vertical cylinders going through the free surface, only one of them being shown in the figure.

From equations (2), (3), (4), through differentiations, we get

∂

∂t
(Uy − Vx) =

∂

∂t
(S Uz −Wx) =

∂

∂t
(S Vz −Wy) = 0 (7)

These conditions can be fulfilled a priori if we introduce a ”velocity potential” Φ(x, y, z, t) such
that

U =
Φx

S
V =

Φy

S
W = Φz (8)

Mass conservation then gives the modified Laplace equation

Φxx +Φyy + S Φzz = 0 (9)

The usual linearized Bernoulli-Lagrange equation is recovered for the pressure:

p = p0 − ρ g z − ρΦt (10)

so that the usual free surface equation still applies

gΦz +Φtt = 0 (11)

At some stage we will need to apply Green’s identity which holds if the velocity potential verifies
the actual Laplace equation. So we introduce a stretched vertical coordinate ζ = z/

√
S = z

√
τ (we

take Cm ≡ 1) so that Φxx +Φyy +Φζζ = 0.
Velocity potentials of the natural sloshing modes have the form

Φn(x, ζ, t) =
An g

ωn

coshλnζ

coshλnh̃
cosλnx sin(ωnt+ θn) (12)

with λn = nπ/L, L the length of the tank, h̃ = h
√
τ and the natural frequencies ωn obtained from

ω2
n = g λn

√
τ tanh

(
λn h

√
τ
)

(13)

To calculate the sloshing response of the tank under forced horizontal motion we follow closely the
method of Molin et al. (2002) — see also Molin et al. (2003) — based on a modal decomposition.

We consider the tank undergoing a forced horizontal motion X(t) = X0 sinωt. We write the
velocity potential as

Φ(x, y, ζ, t) =
X0 ω

τ
φ(x, y, ζ) cosωt (14)

The velocity potential φ(x, y, ζ) verifies the Laplace equation, the no-flow conditions ∂φ/∂ζ = φζ =
0 at the bottom (ζ = 0), ∂φ/∂x = 1 at the vertical walls (x = 0 and x = L), ∂φ/∂n = N1 = − cos θ
on the cylinders, and the free surface condition g

√
τ φζ − ω2 φ = 0 at ζ = h̃ = h

√
τ .

As in Molin et al. (2002) we decompose φ as φ = φ̃+ψ where φ̃ is the infinite frequency potential
that verifies φ̃ = 0 on the free surface and the no-flow conditions given above. The additional potential
ψ verifies the homogeneous Neumann condition at all solid boundaries and the following free surface
condition:

g ψζ

√
τ − ω2 ψ = −g φ̃ζ

√
τ (15)

ψ can be written as a linear combination of natural modes:

ψ =
∞∑
n=1

Cn φn =
∞∑
n=1

Cn
g

ωn

coshλnζ

coshλnh̃
cosλnx (16)
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From the free surface condition (15) the Cn coefficients are obtained as

Cn = − g
√
τ

ω2
n − ω2

∫
F φ̃ζ φn dS∫
F φ

2
n dS

=
g
√
τ

ω2
n − ω2

∫
S∪C φnN1 dS∫

F φ
2
n dS

(17)

with F the free surface, S the tank walls, C the cylinders and N1 the x-component of the normal
vector outward the fluid domain. Green’s identity has been used to transform the numerator, alike in
Molin et al. (2002).

The modal potentials φn, as given in equation (16), do not fulfill the no-flow condition at the
cylinders walls. Equation (16) can be viewed as an outer expansion. In the vicinity of a cylinder
located in xi, a better approximation of the modal potential φn is

φn(R, θ, ζ) ≃
g

ωn

coshλnζ

coshλnh̃

[
cosλnxi − λn sinλnxi

(
R+

a2

R

)
cos θ

]
(18)

with a the cylinder radius and (R, θ, ζ) a local cylindrical coordinate system.
The integration of φnN1 = −φn cos θ over the cylinder wall gives∫

ci

φnN1 dS = 2π a2
g

ωn
tanhλnh̃ sinλnxi (19)

Summing up over all cylinders, assumed to be regularly located in the tank, one gets∫
∑

ci

φnN1 dS = 4 (1− τ)
g

ωn

B L

nπ
tanhλnh̃ (20)

The integration over the two vertical walls at x = 0 and x = L gives∫
W
φnN1 dS = −2

g

ωn

B L

nπ
tanhλnh̃ (21)

The denominator in (17) is taken as ∫
F
φ2
n dS ≃ B Lτ g2

2ω2
n

(22)

so that

Cn ≃ −4
g
√
τ

ω2
n − ω2

ωn

g

tanhλnh̃

n π

1− 2 (1− τ)

τ
(23)

Finally (again see Molin et al. 2002) it is obtained that the modal amplitudes An verify the
pendulum equations

Än +B1n Ȧn +B2n Ȧn |Ȧn|+ ω2
nAn = Dn Ẍ(t) (24)

where extra damping terms have been introduced (B1n a linear damping term due to friction, B2n a
quadratic damping term due to separation), and the Dn coefficient is given by

Dn =
4 tanhλnh̃

n π
√
τ

1− 2 (1− τ)

τ
(25)

The experimental RAOs show a significative shift of the peak frequency as the sloshing amplitude
increases. This wellknown feature is due to nonlinear (third-order) free surface effects (e.g. see
Faltinsen & Timokha, 2009). To represent this shifting behavior, the mass-spring equation (24) for
n = 1 is complemented with a cubic restoring term, as

Ä1 +B11 Ȧ1 +B21 Ȧ1 |Ȧ1|+ ω2
1 (1 + αλ21A

2
1)A1 = D1 Ẍ(t) (26)

5



For a clean tank (without cylinders inside) the theoretical α value is around 2.4 (see Appendix).
Much higher values turned out to be needed in order to fit numerical and experimental RAOs, with
the α value increasing with the number of cylinders in the tank. Presumably this is associated with
increasing perturbations of the free surface.

In Molin et al. (2002) dissipation is considered to be due to friction and/or separation at the
smooth/corrugated walls of the tank. Here friction at the wall is expected to play a negligible role as
compared to separation at the cylinders. So we assume the B1n coefficients to be nil and we follow
an approach similar with the Appendix in Molin et al. (2002) to express the B21 coefficient for the
first sloshing mode n = 1 which is the only one that needs to be damped given the explored range of
frequencies.

To express the B21 coefficient, we assume that only the first sloshing mode is present in the tank,
with the free surface elevation η and velocity potential Φ given by

η(x, t) = A cosλ1x cosω1t (27)

Φ(x, z, t) = −Ag
ω1

coshλ1z
√
τ

coshλ1h
√
τ
cosλ1x sinω1t (28)

Consider one vertical cylinder in x = xi with diameter D. The drag force is obtained from

dFD =
1

2
ρCDD τ2A2 ω2

1 sinλ1xi | sinλ1xi|
cosh2 λ1z

√
τ

sinh2 λ1h
√
τ

sinω1t | sinω1t| dz (29)

Multiplying with the horizontal velocity, and integrating in z from 0 to h, then in time, one obtains
the energy dissipated over one period as

∆E1 =
4

9
ρCDD τ3/2A3 g tanhλ1h

√
τ | sinλ1xi|3

(
1 +

3

sinh2 λ1h
√
τ

)
(30)

Summing up over all cylinders assumed to be regularly set over the length of the tank gives the
total dissipated energy:

∆E1 =
64

27π2
(1− τ) ρCD

B L

D
τ3/2A3 g tanhλ1h

√
τ

(
1 +

3

sinh2 λ1h
√
τ

)
(31)

The kinetic plus potential energy of the sloshing mode is taken to be

E1 =
1

4
ρ g τ A2B L (32)

So the relative energy dissipated over one period is:

∆E1

E1
=

256

27π2
(1− τ)

√
τ CD

A

D
tanhλ1h

√
τ

(
1 +

3

sinh2 λ1h
√
τ

)
(33)

For the modal oscillator the relative ”energy” dissipated over one period is 16/3B21A. Identifica-
tion with the previous expression gives the B21 value:

B21 =
16

9π2
(1− τ)

√
τ
CD

D
tanhλ1h

√
τ

(
1 +

3

sinh2 λ1h
√
τ

)
(34)

The CD value to use depends both on the β number β = D2/(νT ) (ν the kinematic viscosity and
T the period) and on the Keulegan-Carpenter number KC = 2π A/D (Sarpkaya, 2010). Here we only
consider the tests with the emerging 3.2 cm diameter cylinders, so that the β value at resonance is
around 600 and the KC range is from KC ≃ 2 (for X0 = 1 mm) up to KC ≃ 6 (for X0 = 1 cm).
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Some experimental information on the drag and added mass coefficients at relevant KC and nearby
β values (β = 1035) can be found in Sarpkaya (1986). These coefficients were derived from tests in a
U-tube where quasi planar uniform flows can be achieved. In our sloshing tests, the flow is also quasi
uniform by mid-tank where most of energy dissipation takes place: the vertical component of the flow
velocity is nil and, due to the relatively shallow water condition, the horizontal velocity component
varies by only 20 %from bottom to free surface. However Sarpkaya’s experiments are for one isolated
cylinder. From Sarpkaya’s results it can be inferred that the range of drag coefficients is from 0.8 up
to 2.0 as KC increases from 2 up to 6.

3 Comparisons between numerical and experimental results

The table below shows the cylinder configurations that were tested and the porosities achieved. Here
the porosity is defined as τ = 1 − N πa2/(BL) with N the number of cylinders. Also shown in the
table are the resonant frequencies (in rad/s) of the first sloshing mode, obtained in the experiments,
and from applying the dispersion equation (6). The experimental value is taken as the position of the
RAO peak at the lowest motion amplitude.

Number of cylinders Porosity ω1 (exp) ω1 (num)

120 0.732 3.30 3.26

84 0.812 3.40 3.41

60 0.866 3.50 3.52

48 0.893 3.55 3.56

Good agreement can be observed between the experimental and theoretical values of the natural
frequencies.

In each configuration the tank was oscillated at angular frequencies from 2.8 rad/s up to 4.2 rad/s,
around the first sloshing mode, and amplitudes of 1 mm, 2 mm, 5 mm and 10 mm. The free surface
elevation was measured at one end of the tank with a resistive gauge. Thanks to force sensors
incorporated in the Hexapode the hydrodynamic loads were also obtained. Fourier analysis was then
applied to the measurements to yield the RAO of the free surface elevation and the hydrodynamic
coefficients of the tank, following

Fx(t) = ℜ
{
i ρ X0 ω

2 LB h (Ca + i Cb) e
−i ω t

}
(35)

with X(t) = X0 sinωt the imposed motion, Ca the added mass coefficient and Cb the damping
coefficient (see Molin & Remy 2013). The damping coefficient curves, alike the free surface elevation
RAOs, show peaks at the natural frequency of the first sloshing mode.

In the calculations the drag coefficient CD and the detuning coefficient α were adjusted in order
to get the best fit between experimental and numerical RAOs of the free surface elevation. Even
though it has been argued that CD should depend on the Keulegan-Carpenter number, for the sake of
simplicity the same value was used for all imposed motion amplitudes in the considered range (from
1 mm to 10 mm). Obviously better fits could be obtained by adjusting the CD value on a case by case
basis.

Results for the RAOs are given in Figures 3 through 6 for decreasing porosities, that is increasing
number of cylinders, from 48 up to 120. The CD and α values used are given in the captions. It
can be observed that, as the number of cylinders increases, the CD values decrease (from 2.2 down to
1.2) and the α values increase (from 12 up to 26). In the Appendix it is shown that the reference α
value, for a clean tank (without cylinders), is about 2.4. It makes sense that an increasing number of
cylinders enhances free surface nonlinearities. Why the drag coefficient needs to be decreased is less
clear.
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Figure 3: Porosity 89 %. CD = 2.2, α = 12. Numerical and experimental RAOs of the free surface
elevation at the wall.
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Figure 4: Porosity 86 %. CD = 2.2, α = 18. Numerical and experimental RAOs of the free surface
elevation at the wall.

With the CD and α coefficients properly adjusted the agreement between the experimental and
numerical RAOs of the free surface elevation appears to be rather good in all porosity cases.

Figures 7 through 10 show the damping coefficient Cb as obtained experimentally from the mea-
sured force (see equation (35)) and numerically from the expression (31). The agreement is good at
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Figure 5: Porosity 80 %. CD = 1.6, α = 20. Numerical and experimental RAOs of the free surface
elevation at the wall.
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Figure 6: Porosity 72 %. CD = 1.2, α = 26. Numerical and experimental RAOs of the free surface
elevation at the wall.

high porosities but degrades as the porosity decreases.
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Figure 7: Porosity 89 %. CD = 2.2, α = 12. Damping coefficient.
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Figure 8: Porosity 86 %. CD = 2.2, α = 18. Damping coefficient.

4 Concluding remarks

In this paper we have proposed a semi-analytical approach to model wave interaction with dense arrays
of vertical cylinders. Our approach combines some kind of linearized potential flow approach where
viscous flow effects (drag) are introduced a posteriori as in the Morison equation. By ”some kind of
potential flow approach” we mean that a vertical stretching is introduced to account for added inertia
effects due to the presence of the cylinders.
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Figure 9: Porosity 80 %. CD = 1.6, α = 20. Damping coefficient.
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Figure 10: Porosity 72 %. CD = 1.2, α = 26. Damping coefficient.

With a proper tuning of the drag coefficient we have obtained a rather good agreement fo the RAO
of the sloshing motion, in all porosity cases. It must be emphasized here that the porosity cases that
we have considered are much lower than the reported cases in literature which are mostly in the range
[0.95 1.0]. Many authors have relied on CFD models based on the Navier-Stokes equations (e.g. see
Wu et al. 2013, Mei et al. 2014, Chen et al. 2016). Here we show that simpler ways can provide good
numerical results.
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A Shift of the natural frequency

It is known that, as the sloshing motion amplitude of the first mode increases, the peak frequency
shifts to larger or smaller values, depending on the λ1h value. The relative shift is given by

∆ω

ω
= −1

8
λ21A

2 tanhλ1h [f(λ1h, λ1h, π) + f(λ1h, λ1h, 0)/2] (36)

where f is the interaction function given, for instance, in the Appendix of Molin et al. (2014). The
quantity β = f(λ1h, λ1h, π) + f(λ1h, λ1h, 0)/2 is plotted in Figure 11
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Figure 11: Function β vs λh.

When λ1h is less than 1.058 (that is h/L less than 0.3368), the coefficient β is negative, meaning
that the peak frequency increases when the amplitude increases (hard system). At λ1h = 0.615 the β
value is −12.86.

The coefficient α in our Duffing oscillator (26) can be related to β. The resonant frequency is
obtained from

−ω2 + ω2
1

(
1 +

3

4
αλ21A

2
10

)
= 0 (37)

where A10 is the modal amplitude. This means

∆ω1

ω
=

3

8
αλ21A

2
10 (38)

The reference value of α is therefore α = 2.35. This is for a clean tank (without cylinders).
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