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Résumé

L’apparition du galop en torsion est étudiée au moyen de simulations numériques bidimension-
nelles, avec un code éléments finis conçu spécialement pour les problèmes couplés d’interactions
fluide-structure. La comparaison entre simulations statiques en écoulement transversal et simu-
lations dynamiques en mouvement d’oscillations forcées permet de mesurer l’amortissement flu-
ide. Deux façons de modéliser cet amortissement sont développées. On confronte nos résultats
à des expériences numériques en mouvement libre, en utilisant le cycle limite d’oscillation et
la vitesse réduite comme critères de comparaison, lorsqu’on peut les mesurer. On montre
que le modèle quasi statique n’est pas valide sur des géométries élancées, même si la mesure
de l’amortissement sans introduire d’effets d’histoire permet de prédire précisément les plages
d’instabilités.

Summary

The occurrence of rotational galloping for several geometries is assessed through two-dimensional
flow simulations and fluid-structure interaction simulations. A finite element formulation specif-
ically devised for fluid-structure interactions simulations has been used. Non-linear models
aimed at predicting rotational galloping are determined based on cross-flow simulations around
fixed cylinders for various angles of attack. The added torsional fluid damping coefficient is
modelled based on the results of forced rotational oscillation simulations. The reliability of the
models is assessed by confrontation with the results of free rotation simulations, where reduced
velocity and maximum amplitude of galloping have been chosen as comparison criteria, when
they can be measured. The quasi-steady model is shown to have strong limitations on stream-
lined bodies, even if a non-linear model with no history effect can precisely predict unstable
zones.
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1



Figure 1: Arrangement of the mechanical system: notations, shape and sign convention.

1 Introduction

Rotational galloping can occur when a non-circular cylinder in cross-flow restrained by struc-
tural torsional stiffness can rotate around its axis. For some angles of attack, the variation of
the moment acts as negative fluid stiffness or damping which leads to rotational vibrations.
Comparatively to its transverse counterpart, the “rotational galloping is much more difficult
to analyze” [5]. Robertson et al. (2003) compared rotational galloping quasi-steady predic-
tions from Blevins quasi-steady model [2] with data obtained from fluid-structure interactions
unsteady simulations [6]. Their results show that the quasi-steady criterion performs well at
predicting the threshold of rotational galloping of rectangular cross sections. It remains how-
ever that, while very inexpensive, and thus appealing, the quasi-steady criterion validity is
questionable due to the nature of the forces involved in torsional galloping.

A model starts with a way to write the added damping: we compare Blevins quasi-steady
model (section 2, Eqn. 11), to an extension of this quasi-steady model (section 4, Eqn. 15)
and to a Taylor 2nd order expansion in position and velocity (section 5, Eqn. 18). To assess
more accurately its possible validity, the criterion should be tested and confronted with results
obtained on a variety of other section shapes. In this paper we consider a bundle cylinder
section in addition to square section (shown in Fig. 1) and rectangular sections. The flow-
induced stiffness, damping and inertia are determined from forced rotation oscillations results.
All computations are performed with a finite element method. The solver has been specifically
designed and developed to treat fluid-structure interactions with rigid or elastic structures.

2 Quasi-steady model

The occurrence and amplitude of transverse galloping are very well approached with a quasi-
steady approach (see e.g.[3]). Transposing the theory to rotational galloping led to an ad hoc
model based on moment coefficient derivative with respect to the angle of attack [2].

The averaged moment values are shown on Fig. 2 for the square and bundle sections at a
Reynolds number of 200, following notations in Fig. 1. As the square section is symmetric with
respect to the flow direction at zero angle of attack (see Fig. 1), the moment coefficient is an
odd function of the angle of attack θ. Values are compared with those of two other references
for the same value of the Reynolds number. Values compare very well with those obtained by
Robertson et al. (2003) [6]. We suspect that the three-dimensional simulations results of Yoon
et al. (2008) have been obtained with a too low spatial resolution [7].
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Figure 2: Coefficients of moment for a steady square and a steady bundle, Cθ and comparison
with Robertson et al. (2003) and Yoon et al. (2012) [6], [7].

About the bundle, we see that there is no symmetry with respect to the midplane anymore.
Note in passing that having chosen 45◦ or -45◦ as reference, the section would have been
symmetric. However, the present choice makes it easier to compare with the square section.
We observe a similar behaviour of the moment as function of the angle of attack compared
to the square section, but not an odd function anymore due to the asymmetry of the bundle.
The absolute maximum averaged moment is lower than for the square section. This might be
due to two reasons. First recall that the outside diameter is equal to the square section edge.
This makes the apparent bundle face smaller than that of the square. Also, the bundle section
corners are rounded making the cylinder less sensitive to a change in angle of attack.

Removing the effect of von Karman’s vortex street and history effect, the fluid moment
around the structural central axis, Mθ, is assumed to be expressed as follows:

Mθ(θ, θ̇, θ̈,Re) = ρfD
2

[
U2

2
Cθ(θ)− UDCDθ(θ, θ̇,Re)θ̇ −D2Iθ(θ, θ̇, θ̈,Re)θ̈

]
(1)

The mechanical model of the free rotation of the section is:

I[θ̈ + 2ζωnθ̇ + ω2
n(θ − θi)] = Mθ (2)

Consequently, the angle of equilibrium θe is defined by:

Iω2
n(θe − θi) = Mθ(θe) (3)

Including Eqn. (1) on the moment, the equation of motion becomes :(
1 +

Iθ
I∗

)
θ̈ + 2ωn

(
ζ + CDθ

UR
4πI∗

)
θ̇ + ω2

n

(
1 +

U2
R

8π2I∗
Kθ(θ, θe)

)
(θ − θe) = 0 (4)

where

Kθ(θ, θe) = −Cθ(θ)− Cθ(θe)
θ − θe

(5)
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Kθ can be interpreted as a flow induced stiffness term. Static divergence can occur by negative
stiffness if Kθ < 0. Non linear terms will lead to a new equilibrium position.

CDθ can be interpreted as a flow induced damping. Oscillations can occur by negative
damping CDθ(θe) < 0 . Non linear terms will lead to a limit cycle.

Cθ and Kθ can be evaluated using steady case data. We obtain :

Mθ(θ = θe, θ̇ = 0, θ̈ = 0,Re) =
ρfD

2U2

2
Cθ(θe,Re) (6)

and in first approximation according to Eqn. (5):

Kθ(θe) = −∂Cθ
∂θ

(θe) (7)

Using the quasi steady theory, Blevins assumes that a rotating object sees an equivalent angle
of attack [2]:

α = θ − Lθ̇

U
(8)

with L a characteristic length, and that the equation for the moment can be simplified to:

Mθ(θ, θ̇)
1
2
ρfU2D2

= Cθ(α) (9)

For small oscillations around θe in the quasi-steady regime where UR � 1, we have θ̇ �
max(θ − θe) and θe − θ � 1 so that the Taylor expansion of Cθ(α) is:

Cθ(α) = Cθ(θe) +

(
θ − θe −

Lθ̇

U

)
∂Cθ
∂θ

(θe) (10)

Combining Blevins’ assumption (Eqn. 9) with Eqn. (1) and (10) shows that CDθ can be written
as a constant:

CDθ(θe, θ̇, Re) =
L

2D

∂Cθ
∂θ

(θe, Re) (11)

The evaluation of the moment coefficient derivative involved in Eqn. (11) could easily be
obtained from finite difference of time averaged moment histories at different values of the
angle of attack. The criterion of possibility for torsional galloping becomes :

∂Cθ
∂θ

(θe) < 0 (12)

3 Numerical simulations

In order to predict the critical reduced velocity of rotational galloping and the limit cycle, the
effect of the rotational velocity and acceleration on fluid added damping and inertia must be
determined. We proceed with numerical simulations of a forced motion to build a non-linear
model, which will be implemented on free rotation simulations afterwards.
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Figure 3: Views of the mesh: global view (left), proximity of the square cylinder (middle) and
cylinder bundle (right).

Forced rotational oscillation

Simulations of forced rotational oscillations of both sections in cross-flow have been performed
to determine the induced fluid flow damping and added inertia coefficients. The motion of both
sections is:

θ(t)− θe = Θ sin

(
2πU

URD
t

)
= Θ sin(ωnt) (13)

For the calculations, we have set Re = 200 and UR = 40. The simulations last until tf =
500, which is enough to get an established regime and allows us to measure the moment on
approximately 10 periods of the forced oscillations.

Numerical details

All computations are performed with a finite element method. The solver has been specifically
designed and developed to treat fluid-structure interactions with rigid or elastic structures.
The incompressible velocity-pressure formulation of the Navier-Stokes Equations is considered.
3rd order space accuracy is achieved by using P2-P1 Taylor-Hood elements. In this study all
simulations have been performed with an adaptive hp BDF method. We have set a tolerance
error in time of order 10−5. The solution strategy is direct implicit. All degrees of freedom are
coupled. This code has been thoroughly verified and validated for unsteady flows on moving
grids [4]. Details of the convergence study that was performed can be found in [1].

Figure 3 shows the mesh we employed for the simulations, and close-ups of the mesh where
we can see the increased mesh density close to the walls to ensure appropriate flow resolution
within the boundary layers. Note the refinement of the mesh in the wake area thanks to the un-
structured mesh capabilities. Symmetry conditions are applied on top and bottom boundaries.
Outlet conditions are (u : ~σx.~n = 0, v = 0); inlet conditions are (u = 1,v = 0) for velocities in
the x and y directions.
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Figure 4: Spectrum of the moment, with the contribution of Von Karman vortices (dashed
line), and the part of the moment responsible for galloping (solid line). Square section, θe = 5,
Θ = 20.

4 Modelling with an extension of Blevins criterion

Post-processing

Data obtained from the computations is the moment exerted by the fluid on the solid against
time, assuming there is no history effect. This moment is the sum of two contributions: the
effect of Von Karman vortices in the wake of the cylinder, and the fluid moment in which we
are interested. These two contributions can be seen on a Fourier transform of the signal (Fig.
4). The release frequency of Von Karman vortices is well documented: for the square, the
associated Strouhal number is 0.15, as we can see in Fig. 4. Selecting the first 4 harmonics of
the forced motion allows us to keep the relevant part of the signal. The fifth harmonics is too
close from the vortex release frequency to be precisely measured.

Removing the effect of von Karman’s vortex street thanks to this filter, we are able to plot
the dimensionless torque responsible of galloping with respect to θ. We compare this moment
with the measure in the steady cases, in Fig. 5(a) and 5(b). We observe that the steady case is
a good approximation for the average value of the moment, even if dynamic effects appear for
large amplitudes, especially when the slope of the static moment coefficient changes with the
position. We can also notice that dynamic effects are more important on the square section.
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Figure 5: Torque against angular position during fixed motion (grey line) compared to fixed
cases coefficient moment (bold black line), removing Von Karman effect.

Model for the added damping

According to Eqn. (1), measuring the moment when there is no angular acceleration gives
information on CDθ:

Mθ(θ, θ̇, θ̈ = 0)
1
2
ρfU2D2

= Cθ(θ)−
2D

U
CDθ(θ, θ̇)θ̇ (14)

As the movement is forced, Eqn. (14) shows that CDθ can be evaluated for θ(t) = θe,
θ̇(t) = ±ωnΘ. As stated in Eqn. (11), Blevins assumes that CDθ can be expressed with the
derivative of the static coefficient of moment Cθ with respect to θ. According to this assumption,
we built the following model, where the effect of the velocity is developed to the second order:

CDθ(θ, θ̇) = A+B
∂Cθ
∂θ

(θ) + C

(
θ̇

ωn

)
+D

(
θ̇

ωn

)2

+ E

(
(θ − θe)θ̇

ωn

)
(15)

We measured CDθ when θ = θe, what makes it impossible to evaluate E. It is assumed to be
equal to zero. For the other coefficients, the best fit of the numerical values by the model is
shown in Tab. 1. A and B are the most significant parameters of the model: B represents
what Blevins denotes L/2D in Eqn. (11). As L and D are set to 1, measuring B ' 1/2 seems
to be consistent with this criterion. Parameter A can be related to the unavoidable damping
induced by the friction. In case of a circular cylinder, ∂Cθ

∂θ
= 0 but a damping still exists, A 6= 0

and is certainly Reynolds dependent. The effect of the angular velocity on the damping seems
to be negligible (C = 0, D = 0). From now on, the model is simplified, keeping the measured
values for A and B, and setting C and D to zero for both geometries. Fitting the data with
this simplified model does not modify the values for A and B. Comparison between the data
and this simplified model is plot on Fig. 6.
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Figure 6: Model for the added damping as a function of angle.
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(a) Square, θe = 0, Θ = 20
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(b) Square, θe = 20, Θ = 20
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Figure 7: Comparison between the model and the filtered data, for the square (top) and the
bundle (bottom) cylinders.
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Table 1: Fitting coefficients.

Geometry A B C D
Square 0.08 0.49 0.00 0.00
Bundle 0.06 0.66 0.00 0.00

This model is built with the measures of the added damping when there is no acceleration.
However, it is possible to compare our model to the numerical data, the gap between the model
and the data being the effect of the added inertia. We calculate the expected moment from
Eqn. (1), where Cθ(θ) is known from the static case, CDθ(θ, θ̇) is given by the model, with no
added inertia (Iθ(θ, θ̇, θ̈) = 0). Results are shown in Fig. 7 for both cylinders. The model seems
to be a good approximation of the moment, even when angular acceleration is not equal to zero.
We could deduce the value of added inertia from the difference between the two curves, but as
the difference is small and acceleration is very low (| θ̈ |≤ ω2

nΘ, with ωn ∼ 10−1), we assume
that added inertia is negligible compared to added stiffness and damping. An important feature
of the model is its ability to predict the range over which the fluid gives energy to the solid.
Between θ = 10◦ and −10◦ approximately, damping is negative and the solid captures energy.
The amplitude of the oscillation grows until the cylinder reaches a position at which the energy
transfer goes from the solid to the fluid. We expect the equilibrium amplitude to be reached
when the area enclosed by the curve corresponding to a positive damping (|θ| > 10◦) equals
the area corresponding to a negative damping (|θ| < 10◦), on Fig. 7.

Free motion

To asses the reliability of our model, we consider the free rotations of sections around their
central axis. Sections are restrained by torsional stiffness. Eqn. (16) is numerically solved with
UR = 40, cs = 0 and the structural parameters shown in Tab. 2.

I(θ̈ + 2ζωnθ̇ + ω2
n(θ − θi)) = Mθ (16)

Results of the numerical simulations are compared with the solutions of Eqn. (17), which is
Eqn. (4) adapted with our model and assumptions:

θ̈ + ωn
UR

2πI∗

(
A+B

∂Cθ
∂θ

(θ)

)
θ̇ + ω2

n

(
θ − θi −

U2
R

8π2I∗
Cθ(θ)

)
= 0 (17)

Tables 3 and 4 show the critical reduced velocity and limit cycle amplitudes for several
values of initial angle. Comparison is made between our non-linear model and the full numerical
simulations.

The critical reduced velocity is measured from the period of the free oscillations simulations.
The angle of equilibrium is taken as the middle between the top and bottom extrema of the
signal, when a limit cycle is reached, or the final angle when oscillations are totally damped.
The amplitude Θ is measured on the limit cycle. These criteria show the consistency between
the non-linear model and the numerical experiments.
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Table 2: Structural parameters for free motion cases.

Geometry m∗ ks I∗

Square 100 0.411 16.67
Bundle 100 0.123 4.99

Rectangle R = 4 3662 2.00 81.06
Rectangle R = 10 9630 2.00 81.06

Table 3: Results analysis, square
AOA FSI Model Blevins
θi Ur θe Θ Ur θe Θ criterion
0 36.3 0 27 36.1 0 24 Yes
5 36 3 20 36.1 4.3 23 Yes
10 35.4 6.5 16 36.4 8.5 22 Yes
15 37.9 10 No 37.9 9.8 No No
20 43.3 15 No 42.7 14.9 No No

5 Modelling with a 2nd order Taylor expansion

We see that prediction of the free motion is good for the two sections we first studied. We
assess the validity of the model with new geometries, rectangles with aspect ratios of 4 and 10.
The typical size of the cylinder is its length D = 1 and we characterize the geometry with the
aspect ratio R = D/l, where l is the width of the cylinder. The convention is θ = 0 when the
section is horizontal. Moreover, we change the forced-motion law from the sinus to a triangle,
to set angular acceleration to zero on most of the motion. But our two-coefficients model has
very poor results with rectangles, so that we expand the added damping to the 2nd order in
position and velocity, around the average angle θe, to build a more generic model:

Table 4: Results analysis, bundle
AOA FSI Model Blevins
θi Ur θe Θ Ur θe Θ criterion

-15 35.3 -12 No 35.6 -11.8 No No
-10 34.5 -8 2 34.7 -8.3 10 Yes
-5 35.7 -4 19 34.5 -5.0 17 Yes
0 35.7 -1.4 21 34.4 -1.3 19 Yes
5 35.4 2 20 34.6 2.5 19 Yes
10 35.7 5 17 34.7 6.1 16 Yes
15 34.5 9 5 34.3 9.1 4 Yes
20 37 13 No 36.3 12.9 No No
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Figure 8: Added damping, Blevins criterion and galloping zones, for square and rectangular
sections.

CDθ(θ, θ̇) = a+ b(θ − θe) + c(θ − θe)2 + d

(
θ̇

ωn

)
+ e

(
θ̇

ωn

)2

+ f

(
(θ − θe)θ̇

ωn

)
(18)

The six coefficients can be obtained from our numerical experimental data. Our first model
suggests that the effect of the angular velocity on the damping can be neglected. We noticed
in this second model that d, e and f are not equal to zero, but their value is small compared
to other coefficients, so that we came to the same conclusion: CDθ(θ, θ̇) ' F (θ). A least square
minimization gives the function F . To investigate if Blevins criterion makes sense with the new
streamlined geometries, we plot on Fig. 8 the damping as a function of the position (F (θ)),
the derivative of the static moment coefficient and the unstable zones. It appears clearly that
our measure of the damping is accurate, as a negative damping corresponds to the galloping
positions. But we notice that a negative slope of the moment coefficient is not always linked to
a negative damping: Blevins criterion is wrong for rectangular geometries. The success of the
first model is only a consequence of the similarity between the damping and the derivative of
the moment coefficient for the square section. To determine the unstable zones, the free motion
simulations have been done with the parameters in Tab. 1 and no structural damping. Note
that the average position of the cylinder strongly depends on the reduced mass through the
structural stiffness, for a given reduced velocity. We selected high reduced masses to limit the
static deflection of cylinders, but it made the time to reach the limit cycle too long. Nevertheless,
the prediction of the unstable angles of equilibrium from the Taylor expansion approach works
far better than models obtained with Blevins assumption.
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Nomenclature

Solid parameters

D Typical size of the cylinder section
ρs Solid dendity
Mθ Fluid moment on the cylinder section,

around the structural central axis
cs Structural damping
ks Structural stiffness
I Inertia per unit length of the section
θi Initial angle, for which the torsion

spring does not exert any torque
θe Equilibrium angle under fluid moment
Θ Amplitude of the forced motion

Fluid parameters

U Fluid transverse velocity
ρf Fluid density
µf Fluid dynamic viscosity

Non dimensional parameters

Re = ρfUD/µf Reynolds number
R Aspect ratio of the section
tf = Ut/D Fluid time
ts = ωnt Solid time
UR = 2πtf/ts Reduced fluid velocity
m∗ = ρs/ρf Reduced mass
ζ = cs/2

√
ksI Structural damping ratio

I∗ = I/ρfD
4 Inertia number

Cθ Coefficient of moment
Kθ Flow induced stiffness
CDθ Fluid added damping
Iθ Fluid added inertia
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