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Résumé

Dans le cadre de la conception et de I’exploitation de cerfs-volants pour la propulsion auxiliaire de navires,
il est nécessaire d’étre capable de prévoir rapidement la traction que peut fournir un kite en fonction de sa
trajectoire. Dans un premier temps, un modele 3D non linéaire basé sur la ligne portante de Prandtl a été
mis au point a cet effet. Il permet le calcul rapide des efforts aérodynamiques d’une aile avec des angles
de diedre, de vrillage et de fleche, variables en envergure ; pour des cinématiques de vol prenant en compte
vitesses de translation et taux de rotation. Ce modele a été vérifié grace a des simulations RANSE 3D et
donne des résultats satisfaisants en incidence et en dérapage, avec par exemple des écarts d’environ 5% pour
les prévisions en portance. Une attention particuliére a été apportée a I’estimation de la précision des résultats
numériques produits. Dans un second temps, ce modele a été introduit dans une nouvelle procédure itérative
d’équilibrage du kite, qui a été utilisée pour estimer son chargement en vol dynamique sur une trajectoire
circulaire. Dans ce cas, I’influence des taux de rotation sur le chargement est mise en évidence. Une étude
paramétrique a finalement été menée pour évaluer et analyser les variations des coefficients aérodynamiques
caractéristiques du vol en fonction de la longueur des lignes et du rayon de la trajectoire.

Summary

As part of the design and operation of kites as auxiliary propulsion of vessels, it is necessary to be able
to quickly estimate the traction that can provide a kite according to its trajectory. At first, a 3D non-linear
model based on the lifting line of Prandtl has been developed for this purpose. It allows the rapid calculation
of aerodynamic forces for a wing with any laws for the dihedral angle, the twist, and the sweep angle, along
the span; and for a general flight kinematic taking into account translation velocities and rotation rates. This
model has been verified by comparison with 3D RANSE simulations and produces satisfactory results in
incidence and sideslip, with such gaps of about 5% for forecasts lift. Special attention has been given to the
estimation of the accuracy of the provided numerical results. Secondly, this model has been introduced in a
new equilibrium iterative procedure for the kite, which has been used to estimate the loading of a dynamic
kite flying on a circular path. In this case the influence of the rotation rates on the loading is highlighted. A
parametric study has finally been conducted to assess and analyse the changes in aerodynamic coefficients
flight characteristics depending on the tether length and the radius of the trajectory.



1 Introduction

This work is part of the beyond the sea® project which aims to develop tethered kite systems for auxiliary propulsion
of merchant ships. It is necessary to develop an aerodynamic model in order to estimate the kite properties. Knowing
the computational time needed to carry out the CFD simulation of a kite, it can be very useful in a design stage to use a
fast, reliable and simple model to estimate rapidly the kite aerodynamic performances. As the kite can follow a complex
trajectory, the method has also to take into account any sideslip angle or turn rate of the kite.

The zero-mass model is often used to estimate the kite performances. In this model, the weights of the kite and of
the tethers are neglected and the lift-to-drag ratio of the kite wing is a fundamental given. Dadd [4] used it in order
to predict the kite velocity and the tether forces. However Dadd assumed that the kite lift and drag coefficients remain
constant during the flight. Furthermore the aerodynamic coefficients were measured experimentally and then estimated for
different angles of incidence with formulas from the Prandtl lifting line theory. It is certainly hard to consider experimental
measurements each time a new kite geometry is tested. Gaunaa [5] developed a computationally efficient method to
determine the aerodynamic performances of kites. The approach iteratively couples a Vortex Lattice Method (VLM)
with 2D airfoil data to consider the effects of airfoil thickness and of viscosity. The results were compared with RANSE
simulations and showed good agreement for cases without stall. Nevertheless only kite in symmetrical translation motions
were considered in this work.

The Prandtl lifting line method is also used for wings performances prediction. As an example Graf [6] used a non-
linear iterative lifting line method to predict the lift and drag of a two-element straight wing for an AC72 catamaran. The
comparison with RANSE simulations showed as well a good agreement for attached flow regime. Leloup [10] adapted
the lifting line method for 3D kite wings with variable dihedral and sweep angles along the span. However in this work
a direct solving, based on a collocation method, was used and prohibits to take into account the non-linearity of the lift
coefficient.

This study first presents in section 2 the geometry of the kite and its parametric definition. The section 3 details the
3D non-linear lifting line method which was implemented to cope with wings with high dihedral and sweep angles. In
section 4, the different RANSE simulations, which have been carried out in order to validate the 3D non-linear lifting line
results, are described, and then the comparative results are discussed. Eventually section 5 presents a use of the method
to simulate the flight of a kite on a circular trajectory.

2 Parametric definition of the Kite geometry
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Figure 1 - (a) Definition of the kite geometry. (b) Local effective wind and local lift per unit length in the section plane.

The kite geometry is defined in the Cartesian reference frame (0, x;,y5,z;) (see Figure 1 (a)). A generatrix line is given
as a parametric planar curve M(s) in the plane (0,y;,z), M denoting the current point and s the curvilinear abscissa. In
general this line is chosen symmetrical with respect to the axis (0, z;). At the current point M(s), the section of the kite is
defined in the normal plane with respect to the tangent vector to the generatrix line 7 (s) = M /ds. This plane is denoted
(M(s),%;,7(s)), where 7 (s) = %, x 7 (s) is the normal vector in the (0,5;,7;) plane to the generatrix line. The local chord
direction x;(s) is obtained from the rotation of an angle o(s) around 7 (s) of the vector x;, where a(s) is a given twist
law. M(s) is supposed to be the quarter chord point of the current section. The leading edge A(s) and the trailing edge
F(s) are then placed along the chord axis (M(s), x; (s)) according to a given chord law c(s), following AM (s) =0.25¢(s)x; (s)
and MF (s) = 0.75¢(s)X;(s). This finally leads to the local chord reference frame of the kite section (A(s), X (s), 7. (s)) with
y.(s) = X,(s) x T (s), where the points of the extrados and intrados can be placed; for example from a given non dimensional



section definition, scaled with the chord law c(s). In the case of a kite wing with sweep angle, the local section points are
finally translated by the vector f(s)x,, with f(s) a given sweep law.

Within this study, the chosen kite geometry is un-twisted and un-swept, and is constructed as previously described,
with a semi-circular generatrix line and a linear chord law varying from the root section in the symmetry plane to the
tip section. The kite section is kept constant along the span, and is defined by the NACA2412 points. For the numerical
verification results presented section 4, the radius of the generatrix line is 1.5m, and the chords are 1.0m at root and 0.5m
at tips. For the simulations of kite’s circular flights in section 5, the radius of the generatrix line is 3.0m, and the chordlaw
is constant of 2.0m.

3 3D non-linear lifting line method

The 3D non-linear lifting line is based on an extension of the Prandtl’s lifting line theory. This extension is intended to
address cases of wings with variable dihedral and sweep angles. Leloup introduced in [10] a linear implementation while
the present method is taking into account the non-linearity of the lift coefficient. The kite wing is supposed to fly in a
given wind Vaw» With a given velocity Vy at the quarter chord point K in its symmetry plane, and with a given turn rate
8. In this general case, the kite global apparent wind is V, = Vay — V¢ whose direction is denoted %,. The finite wing
and its wake are represented by a set of horseshoe vortices of different strengths I' = (I};),—1._,. The aim of the algorithm
presented thereafter is to calculate the circulation I'; of each horseshoe vortex. Once these strengths are obtained, the local
effective flow for each wing section allows local aerodynamic forces and torques calculation along the span of the wing.
The numerical iterative solution is taken from Anderson [2], but the calculation of the local effective angles of incidence
is adapted to the cases of wings which are non-straight and non-planar. The horseshoe vortices used for discretisation,
and calculation of their influences, are for their part derived from Katz and Plotkin [8].

Horseshoe vortices
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Figure 2 — Example of a low discretised lifting line model, of a kite in translation at 10° of incidence. Red vectors
are proportional to the local aerodynamic resulting forces. Local torques are not represented to improve
readability.

The wing is divided in a finite number n of plane sections parallel to x;, as defined in section 2, each one represented
by a horseshoe vortex. The horseshoe vortex number i consists of six vortex segments. The bound vortex I';7; ds; is located
at the local quarter chord length, perpendicular to the plane of the considered section. Each of the two trailing vortices
are separated into two parts: the first which extends parallel to the chord over one chord length, £T;x; ;c;, and the second
which extends parallel to the global relative free stream direction X, and over several chords length leading to /; length,
+T%;1;. The starting vortex —T,% ds; is finally used to close the horseshoe vortex. An example of the discretised model
is presented in Figure 2. Note that even with a swept wing, the bound vortex along the lifting line is orthogonal to the
two adjacent trailing vortices. This leads to a piecewise constant discretisation of the lifting line, but it is necessary in
order to have a correct match between the local lift calculated from the Kutta formula or from the polar of the section
(see Figure 1 (b)), as theoretically required in such models. For the section i of the kite, the local apparent wind is given
by V, ;= Vaw — (Ve + 8 x KM,). 2D polar curves for the coefficients of lift (Cl;), drag (Cd;), and moment about the quarter
chord point (Cm;), are also supposed to be given with respect to the angle of incidence.

The numerical iterative solution for the circulation I'; of each horseshoe vortex is described hereafter with p the
counter of the recursive steps. The local circulation values are first initialized by an elliptical or other distribution along
the wing span, denoted T'\” for p = 0. At step p, starting from the T'” values, the I\"*!
For each point M; of the lifting line, the induced velocities by each vortex segment are calculated from I'” values with
the Biot-Savart law and then summed, leading to the induced velocity V7). Combined with the local free stream
velocity V,;, one obtains the effective wind m(”). This velocity is projected in the plane of the section, leading to

Vi i? = V1P — (Vs i - 1) and to the section angle of effective incidence a;f; .. Using the 2D lift polar curve

) values are updated as follow.



of the section, one obtains the local lift per unit length, in the section plane, orthogonal to mw, and of modulus
LY = O.Spr(fj)zic,-Cl,-(a;',’; .) (see Figure 1 (b)). By construction this local lift is orthogonal to the (V,/, %), 7) plane, as it
should be according to the Kutta formula I: ) = pm@) <1, applied to the bound vortex. The value of the bound vortex
strength T*Y is finally settled so that the Kutta formula also leads to the previous modulus L. In other words, I\"*"
is calculated solving || pm(m xT;7|| = L” for the unknown T, which naturally leads to T = 0.5« Vlff_’/) ,.c,-Cl,»(a](,f_} -
The circulation value is ultimately updated by weighting between current I'”"") and previous I'”’ values using a damping
factor. This whole process is repeated and, as expected, the circulation distribution is found to converge according to a
stopping criteria of the form ||[T?*) —TW | < (10|T®*+D ||+ 1)« 107V,

Once convergence is reached, the lift, drag and torque of each section of the wing are then post processed with the
converged circulation, which leads to integrated local loads. Finally, these are vectorially summed, to obtain the global
force and the global moment about the K point, which apply to the kite wing.

The converged result is found to be independent of the initial solution. Mesh convergence studies were performed.
In the cases of straight wings in translation motion parallel to their symmetry plane, very good results versus analytical
ones were obtained with at least 10 horseshoe vortices. Nevertheless, in the cases of 3D wings with variable dihedral and
sweep, a larger mesh dependency of the converged results was observed, in particular for the total drag coefficient. In the
following, the lifting line results are presented for a wing discretised with 40 sections. The mesh having been varied from
10 to 200 sections, the confidence intervals at 95% were estimated using the standard deviations of the results. In the linear
range, for angles of incidence typically lower than 10°, it was obtained: 1.0% for the lift, 1.3% for the drag and 1.6% for
the moment about the K point. In the non-linear range, for angles of incidence typically greater than 10°, it was obtained:

4.0% for the lift, 15.3% for the drag and 14.1% for the moment about the K point.

4 Verification of the 3D lifting line method with StarCCM+® simulations

In order to validate the 3D non-linear lifting line method, its results were compared to those obtained from 3D RANSE
simulations. The 2D and 3D RANSE necessary simulations were performed with the generalist tool STAR-CCM+®. The
2D simulations were used for convergence studies, but also to obtain the 2D polar curves of the kite section, which were
required to feed the 3D non-linear lifting line model. In a second step, the 3D simulations were used to calculate the
global aerodynamic efforts of a kite in translation, with respect to variations of the angle of incidence and the sideslip
angle.

4.1 General numerical set up

Within this study, all the RANSE simulations were incompressible, steady and fully turbulent. The retained turbulence
model was the two-equation k-¢ realizable model with a two-layer formulation for the wall treatment. The segregated
flow solver was based on the SIMPLE algorithm, and a second-order discretisation scheme. It was chosen to work with a
kite section or a kite wing fixed with respect to the computational domain, and to vary the direction of the inlet velocity
in order to model the angle of incidence and the sideslip angle. The inlet boundary conditions were such that the chord
based Reynolds number was 3.1 % 10°, for the root section of the kite. The turbulence intensity was set to 0.5% and the
turbulent viscosity ratio was set to 1.

Figure 3 — (a) 2D meshed computational domain. (b) View of the mesh around the profile section. View of the near wall
mesh in the vicinity of (c¢) the leading edge and (d) the trailing edge.

The meshed computational domain is presented Figure 3 (a) for the 2D simulations and Figure 4 (a) for the 3D
simulations. The domain was meshed using the trimmed cell mesher, which led to predominantly hexahedral mesh
(Figure 3 (a)). It was controlled by a cell base size (0.1c), and targeted cell sizes at some boundaries: inlet and outlet



(0.5¢), wing extrados and intrados (0.025¢), wing leading and trailing edges (0.00625¢). The cells size growth rate was very
slow, which means at least 8 equal sized cell layer per transition (Figure 3 ()). Around the wing a prism layer mesh was
used in order to get orthogonal cells next to the wall (Figure 3 (¢) and (d)). It was controlled by its thickness (0.0125¢), a
number of layers (10), and a growth rate between adjacent cells in the wall normal direction (1.2). In 2D two anisotropic
wake refinements were also prescribed in the mean free stream direction from the trailing edge, one finely meshed of one
chord long and the other coarse, extending over several chord (15¢) (Figure 3 (a) and (b)).

Domain
Radius :

10c

oA /
Domain length : 20c¢

Figure 4 — (a) 3D computational domain. (b) 3D mesh sections which illustrate the refinements in the wake and around
the tip vortex.

In 3D the wake refinements were prescribed on the cylinder which is supported on the trailing edge and whose axis is
parallel to the mean free stream, over the same extent as in 2D. In order to partially resolve the tip vortex, a supplementary
refinement was also prescribed in a conical region, which includes the wing tip and whose axis is parallel to the mean free
stream. These refinements are illustrated Figure 4 (b). The obtained 2D and 3D meshes were coarse, of about 16 10° cells
in 2D and 4.7 % 10° cells in 3D, and they led to a mean value of y+ over the wing surface of about 35 in each simulated
cases. The stopping criteria of the simulations were based on the monitor of the lift and drag coefficients, specifying a
|max — min| tolerance over the 10 last calculated values. The tolerance was set to 10~® for both coefficients, and it was
found that it corresponded to the fall of the non-dimensional residuals over at least 4 or 5 decades.

4.2 Estimation of the numerical accuracy of the RANSE simulations

An attempt was done to estimate a numerical accuracy of the 2D and 3D RANSE results. It was supposed that results
from 2D simulations were sufficient for that purpose and that they could be extrapolated to 3D cases. In addition, it was
assumed sufficient to examine a single angle of incidence of 2 ° for the root kite section, to be representative.

cl (a) cl (b) cl (c)
0.48 ‘ 0.46 T
0.44 —%}g@ 5 , —= |
0.46 |- - 0.44 - =
0.42 -

—o— k-€ realizable "¢
044 o0 ® Y N —e— k-0 SST 042 —
—a4— Spalart-Allmaras

| | 0.40 TR RTY R I WA NIT] SRR RRTT] |
0 10 20 30 010 5-10 1-10° -t 10° 0! 102

N Cells number y+

Figure 5 — Convergence history of the lift coefficient for variations (a) of the computational domain size, (b) of the
number of cells in the mesh, (c) of the number of layers of the near wall mesh and of the turbulence model.

Three elementary variations of the general numerical set up of section 4.1 were considered. The results in term of lift
coefficient are presented Figure 5. The obtained curves are similar for the coefficients of drag or moment. First (Figure 5



(a)), the size of the computational domain was varied (parameter N from 1 to 27, see Figure 3 (a)), keeping constant the
base size, the absolute targeted sizes at the section, the near wall mesh parameters, and the growth rate. Second (Figure 5
(b)), the targeted sizes at each boundary being defined relatively to base size, the base size was varied (from 0.6¢ to 0.02c,
leading to a number of cells from 6 x 10° to 120 % 10*), keeping constant the near wall mesh parameters. Third (Figure 5
(c), the number of layers of the near wall mesh was varied (from 4 to 32, leading to mean y+ values from 156 to 0.5),
keeping constant all the other mesh parameters. In this last case, two other turbulence model were also tested (k- SST
and Spalart-Allmaras).

For the variations of the domain size and of the number of cells (Figure 5 (@) and (b)), based on the limited number
of computed points, for each aerodynamic coefficient, it was estimated a mean converged value (denoted cvg), a standard
deviation relative to this mean (denoted rms), and then a 95% confidence interval. For the variations of the near wall mesh
and of the models (Figure 5 (c)), respectively around y+ ~ 1 and y+ ~ 30, it was estimated first the coefficients mean
values (also denoted cvg) and their standard deviations relative to these means due to model variations (also denoted rms),
and second the relative difference between coarse and fine mesh mean results (denoted dif). These are plotted in black
Figure 5, and it was found that in each case the confidence interval enclose the red filled point corresponding to the general
numerical set up of section 4.1. It can also be noticed Figure 5 (¢), as expected, that intermediate meshes in the buffer
layer, for y+ in the range of [5;30], led to highly model dependent results, and that the Spalart-Allmaras model is valid
only for fine meshes around y+ = 1.

Figure 5(c)
Figure 5 (a) | Figure 5 (b) y+~1 y+~30 cdif
2Crms/Ccvg | 2Crms/Ccvg | 2Crms/Ccvg | 2Crms/Ccvg
Lift 0.6% 0.7% 0.8% 1.2% 1.2%
Drag 1.7% 2.5% 5.0% 1.5% 2.0%
Moment 0.9% 1.5% 1.5% 2.4% 2.3%

Table 1 — Estimation of the deviations, coming from the variations of the domain size, of the mesh and of the turbulence
model. C stands for coefficient.

More precisely, the estimated deviation results for the coefficients of lift, of drag and of moment, are resumed in the
Table 1. From this table it was finally estimated that the numerical results provided by the coarse meshed numerical set up
of section 4.1 were unconfined, mesh converged, and model independent, with the following relative accuracies: +3.7%
for the lift, +7.7% for the drag and +7.1% for the moment.

4.3 Numerical results

2D RANSE simulations were carried out on the NACA2412 section for 14 angles of incidence within the range of
[—8°;16°]. The numerical results were compared with experimental ones obtained in wind tunnel [1] at the same Reynolds
number. The parametric polar curves used for the lifting line method were established by approaching the RANSE results
at best. All these results are presented Figure 6. The agreement between experimental and numerical results is excellent
for the lift coefficient and satisfactory for the coefficients of drag and of moment. For the last two, one of the explanation
for the differences is that simulations are fully turbulent whereas the experiments were performed on a smooth section in
a low residual turbulence wind tunnel.
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Figure 6 — 2D polar curves obtained via StarCCM+® (filled squares), compared with experimental data [1] (filled trian-
gles), and fitted with parametric polar curves used in the lifting line method (plain line).
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Figure 7 — 3D aerodynamic coefficients with respect to the angle of incidence, obtained via StarCCM+® (filled squares)
and the lifting line method (plain line) on a 3D kite. Error bars are the estimated numerical accuracies.

For the validation of the lifting line method, 3D RANSE simulations have been carried out. Figure 7 shows the
three aerodynamic coefficients for a kite purely in incidence. The error bars are the confidence interval at 95% for the
StarCCM+® results and for the mesh dependency of the lifting line method as presented section 3 and section 4.2. The
difference between the RANSE results and the lifting line method are around 5% for the lift coefficient. For the drag
coefficient, there is a 5% gap at low angle of incidence up to 20% for the higher angles of incidence. The difference
between the two approaches for the moment coefficient is of 12% in average.
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Figure 8 — 3D aerodynamic coefficients with respect to the sideslip angle obtained via StarCCM+® (filled squares) and
the lifting line method (plain line) on a 3D kite at 2° of incidence. Error bars are the estimated numerical

accuracies.

Simulations were also carried out for the kite at 2° of incidence with different sideslip angles (see Figure 8). The
lift coefficient is estimated from the aerodynamic resultant orthogonal to the wind direction. For the three aerodynamic
coefficients, roughly the same gap is found between the kite purely in translation at 2°of incidence and the kite at 2°of
incidence with any sideslip angle included in [0°;15°]. The difference is approximately of 10% for the lift coefficient
between the RANSE simulation and the lifting line method. For the drag and moment coefficients, it is only of a few
percent. At 15° of sideslip angle, the results start to differ more significantly for the drag coefficient. Following the results
presented Figure 7 and Figure 8, and taking into account the computation time of each approaches, the lifting line results
are quite satisfying for a large range of incidence and a sideslip angle included between 0° and 15°.

5 Rigid kite with a circular path

A kite develops its maximum power in a dynamic flight thanks to its own velocity. Dadd er al. [4] used the zero-mass
model to predict the kite forces on an eight shaped trajectory. Within this model, the kite is reduced to the point K, and
the tethers are reduced to only one rectilinear equivalent, whose direction and constant length are 7z and Ly, such that
OK = —L;7g, 0 being the anchor point. The weights of the kite and of the tethers are neglected. The kite is assumed to be
in pure translation against the apparent wind V) = View — Vi supposed to be parallel to the kite symmetry plane (K,x;,7;).
Under such assumptions, being given the wind m = VewXrw, the spherical coordinates of the kite, the flight direction xy,,



and a lift-to-drag ratio ¢, it is possible to derive analytically the modulus of the kite velocity Vx and the apparent wind V,,
[9] (and finally the resulting force, a global lift coefficient being also given). In order to avoid to postulate €, the global
angle of incidence of the kite o, relative to the tangent plane in K at the flight sphere being assumed to be known, Leloup
[9] proposed an iterative procedure to calculate the effective value of the lift-to-drag ratio at each point of a prescribed
trajectory. Nevertheless, the kite is always assumed to be in pure translation against V., and its turn rate is neglected, while
it certainly induces an asymmetrical loading and may change significantly the equilibrium.
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Figure 9 — Circular path of the kite as discussed in section 5, with with ‘71:1; the wind, Xy, the kite velocity direction, V;
the apparent wind seen by the kite, O the anchor point and R the radius of the trajectory.

In this section, a new procedure is proposed to calculate the effective lift-to-drag ratio of a kite along a prescribed
flight path, taking into account the turn rate influence. In a first step, the investigated trajectory is a circular trajectory of
axis (0,xgy) around the full power point, xzy being the wind direction (see Figure 9). Due to symmetry, the flight of the
kite is steady in this case, and the turn rate O can easily be calculated.

5.1 Equilibrium iterative procedure for the kite

The wind Vgy, the length Ly of the equivalent tether, the radius R of the trajectory of the point K, and the kite geometry
being prescribed, the goal is to find the equilibrium position of the kite, still assuming zero mass and the relative wind
V, =V, %, parallel to the symmetry plane (K, ;7). The vector ¥ is defined as the direction vector of the projection of X
or x; on the tangent plane in K at the flight sphere. The basis of the tangent plane is completed with y,5 = o x Xz0. Three
pseudo-degrees of freedom are introduced to position the kite relatively to the tangent plane in K at the flight sphere:
a geometrical angle of incidence a, around (K,y) from X; to X, a roll angle y around (K,X;) from —yq to y, and a
yaw angle 8 around the tether axis (K,zq) from X to —Xxy,. o, is a given, is kept fix, and is supposed to result from an
adjustment of the real front/back tethers. y and 8 are unknown variables. 7y is supposed to result from an adjustment of the
real left/right tethers, while 8 is supposed to result from a self-positioning of the kite.

Since this flight case is steady, no matter the chosen point K along the studied circular trajectory, the flight direction
¥v, is known, and the iterative algorithm starts with an estimated lift-to-drag ratio £¢© and a roll angle ® = 0. Denoting
the counter of the recursive steps p, the kite velocity V"’ can be calculated via the zero-mass model formula with Equation
1 [9], then the apparent wind by VP20 = Ve X — V,E” )x_vk’ . The rotation rate of the kite is also calculated with Equation
2.

— 2
N TN XRW * Zk0
V[gp) = Vew (XRW.XVK)+\/(XRW~XVK)2+ (W) B v
(p)
N V,
o — %W ?

By projection of V,(”) on the tangent plane, X" and B*) are obtained. Using the 3D lifting line model, for the kite at

a,, ¥, and B, with respect to ¥z and zg, with the kinematic defined by Ve® and @), in the wind Vg, one obtain

the aerodynamic resultant F.() and the updated lift-to-drag ratio ¢»+!. This force is naturally misaligned with respect to

the equivalent tether direction zz, while it should be the case according to the zero-mass hypothesis. To partially satisfy
p) 7>

this equilibrium condition, the roll angle is firstly updated to ¥»*! in order to get F,() in the (K, g, Z2) plane. This has
the effect of getting the apparent wind velocity out of the symmetry plane of the kite (K,Xx;,Zz;). To recover this condition,



the yaw angle is secondly updated to B+, The whole process is then iterated until convergence of ¢, y, B8, according to
some small numerical tolerance.

It is found that this algorithm converges rapidly, and requires between approximately 5 iterations in the case of trajec-
tories of big relative radius R/Ly (leading to small roll angles), and 20 iterations for small relative radius cases (leading
to high roll angles). When convergence is reach, it is obtained the expected equilibrium characterized by: the effective
lift-to-drag ratio, the aerodynamic resultant effectively aligned with the equivalent tether, the apparent wind effectively
parallel to the symmetry plane, and the remaining attitudes angles y and f3.

5.2 Results

Numerous calculations have been carried out in order to evaluate the variations of the lift-to-drag ratio €, of the aerody-
namic force F,, and of the angles of yaw f and of roll y, with respect to the radius of the trajectory R, the tether length Ly
or the wind velocity Vzy. A fixed angle of incidence a, of 3° have been chosen for the kite.
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Figure 10 — (a) Non-dimensional norm of the local aerodynamic resultant along the kite as obtained from the equilibrium
procedure, with and without taking into account the turn rate influence. The local norms are divided by
the average value of the local norms in the case of the kite in pure translation motion. (b) General flight
caracteristics.

Figure 10 shows the influence of the turn rate on the local loading of the kite. The kite follows a trajectory of radius
10m, with 50m of tether length, in a wind velocity of 5m/s. At convergence, the kite has a velocity of 51m/s for a lift-to-
drag ratio of 10.41, with the lift estimated from the aerodynamic resultant orthogonal to the apparent wind direction. The
black curve represents the relative local loading on the kite as obtained by the iterative equilibrium procedure described
section 5.1, while the gray one shows the local loading of the kite with the same apparent wind but assumed to be purely
in translation, the turn rate being neglected. The asymmetry of the loading caused by the induced velocities by the turn
rate is clearly put in evidence.
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Figure 11 — Evolution of (a) the lift-to-drag ratio, (b) the lift coefficient and (c) the drag coefficient depending on the
radius of the trajectory divided by the tether length, and for different lengths of tether from 25m to 200m.

Figure 11 (a) shows the evolution of the lift-to-drag ratio depending on the relative radius, for different lengths of



the tether between 25m and 200m. The lift-to-drag ratio is quasi-constant for longer tether lengths, in contrast it varies
substantially for the smaller tether lengths. The same kind of variations can be found for the coefficients of lift and of drag
(Figure 11 (b) and (c)). However in this particular case, a diminution of the lift-to-drag ratio corresponds to an increase
of the lift coefficient and a faster increase of the drag coefficient.
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Figure 12 — Evolution of (a) the roll angle, of (b) the kite velocity and of (c) its turn rate depending on the radius of the
trajectory divided by the tether length, for different lengths of tether from 25m to 200m.

Figure 12 shows the roll angle, the kite velocity, and the kite turn rate for the same trajectories and the same tether
lengths as Figure 11. The results for the roll angles seem to be consistent with intuitive physics of kite: the large angles of
roll are obtained in the case of the small radii of trajectory, and vice versa. For high ratio of radius over tether length, the
kite velocity is almost the same, while it is more disparate for small relative radius (Figure 12 (b)). Nevertheless, despite
the velocity decrease, the turn rate stays high due to the small radius of the trajectory.

5.3 Discussion

A first analysis have been made to study the influence of the real wind velocity Vzy by keeping constant all the other
parameters. The lift-to-drag ratio, the roll and yaw angle do not vary with respect to Vzy while the kite velocity Vk, its
turn rate Q and the apparent wind V, depends linearly of Viy. This derives logically from the linearity of Equation 1 and
Equation 2 (see Section 5.1).

As it can be seen on Figure 11 (a), the lift-to-drag ratio tends to a constant value when the radius of the trajectory
increases, the tether length being fixed. The relative radius being fixed, these limit values also reach a constant, when the
tether length is increased. This constant value is the lift-to-drag ratio which is obtained neglecting the turn rate influence.
Indeed, increasing the radius or the relative radius of the trajectory, one comes closer to cases of pure translation motion.

The lift-to-drag ratio decreases for small radii of the trajectory, while the lift and drag increase (Figure 11), even with
a fall of the kite velocity (Figure 12 (b)). This augmentation of the aerodynamic forces is due to the high turn rate of the
kite for the small radii of trajectory, which induces high local effective velocities. For the higher radius over tether length
ratio, the lift-to-drag ratio is more important for the small tether length. For these cases, the drag force is quasi-identical
(between 0.041 and 0.0460) while the lift differs more (between 0.463 and 0.486).

The kite velocity is quite significant. It should be noted that the equivalent tether drag is not taken into account in the
iterative equilibrium solution presented section 5.1. The following values are given as an example for the case recalled in
Figure 10. The tethers drag has been calculated as Argatov et al. [3] by using the formulas from Hoerner [7] with four
lines, each of 6 = 2mm of diameter. The new lift-to-drag ratio is 9.13 instead of 10.41, which reduces the kite velocity to
44.7m/s instead of 51.0m/s, after convergence.

The aerodynamic moment is also not taken into account. In fact, it is implicitly assumed that the pitching moment and
the rolling moment are equilibrated by differential tensions in the real tethers, respectively front/back and left/right. For
the case recalled in Figure 10, the aerodynamic moment about point X is non null. The pseudo-roll component along ¥, is
found to be the major one, the pseudo-pitch component along yy; is the medium one (5 times smaller), and the pseudo-yaw
component along 7 is the minor one (15 times smaller). This last result for the yawing moment is consistent with the
assumption made in section 5.1, which states that the yaw angle only results from a self-positioning of the kite.
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6 Conclusion

A parametric model of wing has been defined. It allows the construction of kite wings with twist, dihedral and sweep
angles. In order to estimate the aerodynamic forces on a kite, a 3D non-linear lifting line method has been developed.
This iterative method is adapted to wings non-straight and non-planar and shows a small mesh dependency at low angles
of incidence. This method has been validated with 3D RANSE simulations. After a mesh convergence study, the results
of the 3D lifting line method show good agreement with the RANSE simulation ones. The difference between the two
approaches is of 5% for the lift prediction, 5% for the drag at the lower angles of incidence, up to 20% near stall conditions.
The gap for the moment coefficient is almost constant around 12%. This model has then be used for the prediction of the
aerodynamic forces on a kite in dynamic flight on a circular trajectory. An iterative equilibrium procedure has been
developped, based on zero-mass model assumptions, but taking into account the turn rate of the kite. The results show the
non-negligible influence of the turn rate of the kite on its performances and the induced asymmetry of the local loading of
the lite.

However this method, by lining up aerodynamic resultant and kite equivalent tether, neglect the kite moment equilib-
rium, assumed to result from differential tensions in the real tethers. The next step will be to take this moment equilibrium
into account and to balance the kite on any arbitrary trajectory, and not only a circular one. Furthermore, experimental
measurements on a kite on eight shaped trajectories have been conducted elsewhere in the research program related to the
beyond the sea® project. They have allowed getting the wind velocity, the tensions in the tethers, the position of the kite
and its velocity depending on variations of the tethers length. The post-processing of these measurements will provide
validation data for the model and its evolutions.
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