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Abstract : A new model to simulate the interaction of several solid blocks with a free surface is presented
in this paper. To this end, a Navier-Stokes model is extended to deal with solid/solid interaction. This is done
by modelling the solid with penalised �uid (�uid with a high viscosity). The main issue is the coalescence of
two rigid bodies when a collision occurs. To avoid this behaviour, a subroutine is implemented in the code
that detects the collisions, computes the new motions for the rigid bodies, avoids the collision while applying
the new motions on a short period of time by adding a volume force into the colliding discs. A �rst validation
for two discs has been made and show that though the motions close to the collision do not exactly comply
with the laws for solid mechanics, they are restored right after. Moreover, simulations with three �uids and
several discs point the potential of this method for waves generated by landslides model as several rigid blocs.

Résumé : Un nouveau modèle pour simuler les interactions de plusieurs blocs solides avec une surface
libre est présenté dans ce papier. Pour cela, un modèle Navier-Stokes est étendu pour gérer les interactions
solide/solide. Cela est réalisé en modélisant le solide par un �uide pénalisé (�uide avec une viscosité élevée).
Le problème principal est la coalescence de deux corps rigides quand ils entrent en collision. Pour éviter ce
comportement, une subroutine est implémentée dans le code qui détecte les collisions, calcule les mouvements
des corps rigides, évite la collision en appliquant les nouveaux mouvements sur un court laps de temps en
ajoutant une force volumique sur les disques en collision. Une première validation pour deux disques a été
faite et montre que même si les mouvements proches de la collision ne respectent pas exactement les lois de
la mécanique des solides, ils sont restaurés juste après. De plus, des simulations avec trois �uides et plusieurs
disques montre le potentiel de la méthode pour les vagues générées par des glissements de terrain modélisés
par plusieurs blocs rigides.
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1 Introduction

Tsunamis can be generated by subaerial landslides as the falling of a �ank of a volcano, pyroclastic �ow
or rockslides in mountain natural reservoir. Some examples of subaerial landslides that have generated a
tsunami are Lituya Bay, Alaska in 1958 [5], Aisen, Chile in 2007 [15], [17], Tafjord, Norway in 1934 [8]. For
the tsunami generated by a pyroclastic �ow, it is di�cult to have recent data, a famous case is the Krakatau
eruption in 1883 [3].

To make numerical simulations of the wave generation by a landslide, approximations have to be done.
The main choices are on the slide model and the �ow model. The possible �ow models vary from shallow
water equations (Harbitz [9]), to Navier-Stokes (Heinrich [10], Abadie [2], [1]), including Boussinesq equations
(Lynett and Liu [13], Watts et al. [21]) and fully nonlinear potential �ow theory (Grilli and Watts [7]).
Considering the slide rheology, some have considered one rigid block (Heinrich [10], Abadie [2] Figure 1b), or
a �uid (Abadie et al. [1] Figure 1a, Viroulet [19]). However, these landslide models do not take into account
the interactions between the several solid blocks composing the slide in reality. Recently, to get round this,
simulations with a coupled CFD-DEM model have been carried out for waves generation by the slide of
granular medium (Shan and Zhao [18], Zhao [22]).

In the present work, a landslide model composed of multi-blocks is considered (Figure 1c). A penalty
method has already been employed by [2] for a single block model in a Navier-Stokes code. In this paper,
a multi-block approach is presented allowing to take into account block/block and block/water interactions.
This model is based on a mix of a penalty model to rigidify �uid portions and additional volume forces ([4])
to mimic contact forces. Compared to last attempts to simulate waves generated by granular medium based
on the DEM method, the present approach allows a direct simulation of the interaction of the blocks with
the free surface which is not possible so far in DEM. But the counterpart is the heavier resolution required
around the blocks. In this paper we present the basis of the model and preliminary validation results.

(a) 2D computations on Cumbre Vieja Volcano, La
Palma, Canary Island, [1]

(b) Computations of triangular block sliding down an
incline, [2]

(c) New model of several solid discs of penalised �uid
in interaction sliding into water

Figure 1 � Three models of landslides: �uid, one solid block, several solid blocks
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2 Method

2.1 Model presentation

2.1.1 Governing equations

The simulation of waves generated by landslide is a problem composed of two �uid phases (air and water) and
solid bodies. Whereas the �uid �ow is governed by the Navier-Stokes (NS) equations (1), the solid motions
are obtained by the Newton's law. Here, by employing a penalty method, only the NS equations will be
solved for �uid �ow and �uid/solid interactions.

The code that is used is Thetis, a numerical simulation tool developed by the I2M Laboratory in Bordeaux.
It enables to resolve various problems: �uid �ows, thermal transfers or porous media. The approach is
Eulerian with a �xed mesh. In this paper, only the incompressible NS equations for Newtonian �uids are
presented: 

∇ · v = 0

ρ

(
∂v

∂t
+ (v · ∇)v

)
+∇p−∇ · [µ(∇v +∇tv)] = ρb

(1)

2.1.2 Solving Navier-Stokes equations

Temporal discretization The Euler scheme of order 1 is used:

∂v

∂t
=
vn+1 − vn

∆tn
(2)

Apply to the Navier-Stokes equations (1), it leads to the following system.
∇ · vn+1 = 0

ρn(
vn+1

∆tn
+ (vn+1 · ∇)vn+1) +∇pn+1 −∇ · [µn(∇vn+1 +∇tvn+1)]− ρnb = ρn

vn

∆tn

(3)

To give a linear formulation of the problem, the convective term (vn+1 · ∇)vn+1 is linearised as (vn · ∇)vn+1.

Velocity-pressure decoupling The velocity-pressure decoupling is realised by the Augmented Lagrangian
method. The pressure term is made explicit and the problem is reformulated. The new problem consists of
optimizing the search of the saddle point associated to le Augmented Lagrangian. The method is iterative,
the system is:

ρn( vn,k+1

4tn + (vn,k∇)vn,k+1)− ρnb−∇pn,k −∇[µn(∇vn,k+1 +∇tvn,k+1)]

−ru∇(∇.vn,k+1) = ρn vn

4tn

pn,k+1 = pn,k − rp∇ · vn,k+1

(4)

with k the method iteration and n the temporal iteration

and ru and rp two strictly positive convergence parameters

The algorithm convergence is reached when (vn,k+1, pn,k+1) = (vn,k, pn,k). The advantage of this method is
the explicit computation of the pressure where no limit conditions on its value is required.

Spatial discretization The spatial discretization is realised by the �nite volume method. The terms of
the equations are expressed by a conservative form in order to use the Stokes formula on the control volume
(VΩ):

1

VΩ

∫
Ω

(∇.F ) dv =
1

VΩ

∫
Γ

F.n ds (5)

with

∫
Γ

F.n ds =

∫
ΓN

F.nN ds+

∫
ΓS

F.nS ds+

∫
ΓE

F.nE ds+

∫
ΓO

F.nO ds (6)

F is the considered variable, ∆i the interface of the volume VΩ with the neighbour volume oriented along i
and ni the normal to the interface ∆i.

Moreover, the mesh is shifted and is composed of several grids: a main grids for scalar parameters, a grid
for each velocity component, a viscosity grid.
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2.1.3 VOF method

Once the pressure and velocity �elds are computed, the interfaces between �uids have to be determined. The
method that is used is the Volume Of Fluid (VOF) method. The interface is represented by a volume fraction
of one of the two �uid in each cell. The variable is the colour function de�ned on each control volume as:

ΦFi
= 1 if the �uid Fi occupies all the control volume

ΦFi = 0 if the �uid Fi is not present in the control volume

0 < ΦFi
< 1 if the �uid Fi occupies partially the control volume

(7)

The evolution of the interface is represented by the iso-contour of the colour function Φi = 0.5.
The VOF-PLIC method employed here consists of a construction of the interface by segments of straight

line. It is composed of three steps:

1. computation of the interface position from the Φi values

2. interface transportation according to the velocity �eld

3. computation of new values of the colour functions in the domain

2.1.4 Penalty method

The modelling of a solid based on the Navier-Stokes equations (8) can be achieved by annulling the local
deformation. This can be obtained by imposing the dynamic viscosity tend to in�nity, this way the only
solution is for the local deformation term ∇v +∇tv to be null. As in the numerical code, it is not possible
to impose in in�nite value, the viscosity is �xed to a very high value determined by a criterion on the overall
deformation of the penalised �uid set by Ducassou et al. [4]. This way the �uid/solid interaction is computed
implicitly by the Navier-Stokes model.

ρ

(
∂v

∂t
+ (v · ∇)v

)
+∇p−∇ · [µ(∇v +∇tv)] = ρb (8)

Collision between two rigid bodies The penalty method described here-before enables to solve the
�uid/solid interaction in a NS code. Nevertheless in case of solid/solid interaction, the behaviour observed,
which is due to the large viscosity value in rigid area, is a perfectly plastic collision where the two bodies
coalesce after the crash. This is not the behaviour expected by the collision of two rigid bodies during a
landslide. Additional volume forces are imposed on penalized area to hinder the contact and therefore the
coalescence. These volume forces are calculated so that blocks trajectory approaches the one which would
have been generated by the real contact. For this purpose a subroutine in implemented in the NS code that
aims to:

� Detect the neighbour rigid bodies

� Detect the possible collision with neighbours and compute the occurring crash time

� Compute and apply the new motion of the rigid body after a collision

As already said, the change of motions of the rigid bodies is realised by applying a volume force on the
penalised �uid, namely changing the term b in the NS equations. This change is active only over a short
period of time (less than 5 time steps) and only in case of collision between rigid bodies.

2.2 Collision detection and velocity change

2.2.1 Detection of collision

As a �rst approach, the geometry of rigid bodies is only disc in 2D simulation. In the remainder of this
paper, the rigid bodies are referred as discs.
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Neighbour detection Several algorithms already exist for neighbour search, see [16], [14]. As in CFD,
equations are solved on a grid, this same grid is used for neighbour cell detection named as conventional
cell model in [14]. On this grid, the presence of disc is known at each node in an array. This array is later
referred to as the identi�cation array. Unlike the array containing the colour that gives only the presence of
a certain phase, the identi�cation array hold the presence of a speci�c solid by a number that speci�es the
disc present. Knowing this, two solutions are considered:

1. Detection of neighbours using an array. For each point of the pressure grid, if this point belongs to a
disc, its neighbour cells are tested for the presence of another disc. These tests are performed by reading
the value in the identi�cation array. The size of the neighbour zone can be adjusted by controlling the
number of cells tested in all directions.

For instance, on the Figure 2, the size of the zone is one cell in each direction. One neighbour cell
tested around the point P , belonging to the disc number 2, detects the presence of the disc number 1.

Figure 2 � Neighbour disc detection using the identi�cation array: one neighbour detected at the orange
point

2. Detection of neighbours using the distance to the centre. With this approach, the size of the detection
zone is independent of the cell size. This zone is an annulus of centre, the centre C of the disk, interior
radius R and exterior radius R+ δ. For each point of the pressure grid, the distance to the disc centres
is computed, if this value is below R+ δ for a disc i, the value in the identi�cation array is read. If this
value is di�erent from i or 0 (no disc present), then this disc is considered as a neighbour of the disc i.

For instance, on the Figure 3, the disc 1 is considered a neighbour of the disc 2 because the point P is
at a distance lower than R+ δ from C1 and belongs to the disc 2.
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Figure 3 � Neighbour disc detection using the distance to the centre

Collision test After the detection of the neighbours, the next question is to know if they are likely to
collide. A subroutine is developed to test the collision of two neighbours, and if positive, the time and
distance to the collision.

The distance vector between the two centres is as follows:

−→
d =

−→
X2(0)−

−→
X1(0) + (

−→
V2 +

−→
V1)t (9)

The two discs collide if the distance between the centres is the sum of the two radii, namely if
−→
d ·
−→
d = (r1+r2)2.

Using the equation (9), we get a quadratic equation to solve :

at2 + 2bt+ c = 0 (10)

with a = (V1x − V2x)2 + (V1y + V2y)2

b = (X2x −X1x)(V2x − V1x) + (X2y −X1y)(V2y − V1y)

c = (X2x −X1x)2 + (X2y −X2y)2 − (r1 + r2)2

The reduced discriminant ∆ = b2 − ac is calculated. Depending on its value, several cases are distinguished:

� ∆ < 0: no real solution, no collision

� ∆ ≥ 0: one or two real solutions: t1 = −b−
√

∆
a and t2 = −b+

√
∆

a

� if t1 < 0 and/or t2 < 0: no collision

� if t1 > 0 and t2 > 0: collision at time tc = min(t1, t2)

2.2.2 Computation of the velocity after collision

The collision is supposed without friction and with a Newton coe�cient of restitution that can vary the
behaviour between perfectly inelastic to perfectly elastic collision.

Collision between two discs After calculating the time of collision, the velocity of both discs after the
impact V +

1 and V +
2 have to be determined, namely 4 unknowns.
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Momentum conservation The momentum is conserved in the system composed by both discs, it leads
to two equations:

m1(
−→
V +

1 −
−→
V −1 ) = −→p12 (11)

m2(
−→
V +

2 −
−→
V −2 ) = −−→p12 (12)

with −→p12 the exchanged momentum

The sum of these equation leads to one vectorial equation, namely two scalar equations:

m1

−→
V +

1 +m2

−→
V +

2 = m1

−→
V −1 +m2

−→
V −2 (13)

No friction As we consider no friction, the force is collinear to the normal of the contact point. It leads
to the following scalar equation:

(
−→
V +

1 −
−→
V −1 ) ·

−→
T = 0 (14)

with
−→
T the tangent vector to the contact point

Newton's restitution law There are two well-known coe�cients of restitution, Poisson's and New-
ton's, [20]. As there is no friction in this model, the Newton coe�cient of restitution is used. This leads to
the last equation given by the Newton's restitution law:

(
−→
V +

1 −
−→
V +

2 ) ·
−→
N = −e(

−→
V −1 −

−→
V −2 ) ·

−→
N (15)

with e the restitution coe�cient

The coe�cient of restitution e has its value between 0 and 1, with 1 for an elastic impact.

Solving the equation system The equation system is:

m1V
+
1x +m2V

+
2x = m1V

−
1x +m2V

−
2x

m1V
+
1y +m2V

+
2y = m1V

−
1y +m2V

−
2y

V +
1xTx + V +

1yTy =
−→
V −1 ·

−→
T

V +
1xNx + V +

1yNy − V +
2xNx − V +

2yNy = −e(
−→
V −1 −

−→
V −2 ) ·

−→
N

(16)

This linear system can be written in a matrix way AU = B with:

A =


m1 0 m2 0
0 m1 0 m2

Tx Ty 0 0
Nx Ny −Nx −Ny

 (17)

U =


V +

1x

V +
1y

V +
2x

V +
2y

 (18)

B =


m1V

−
1x +m2V

−
2x

m1V
−
1y +m2V

−
2y−→

V −1 ·
−→
T

−e(
−→
V −1 −

−→
V −2 ) ·

−→
N

 (19)

This system can easily be solved using a Gaussian elimination.

Collision between Nd discs The similar equations are written for the collision of a group of Nd ≥ 2 discs.

miV
+
ix −

∑
j∈P (i)

pi,jx = miV
−
ix

miV
+
iy −

∑
j∈P (i)

pi,jy = miV
−
iy

pi,jTi,jx + pi,jyTi,jy = 0

(V +
ix − V

+
jx)Nx + (V +

iy − V
+
jy)Ny = −e[(V −ix − V

−
jx)Nx + (V −iy − V

−
jy )Ny]

(20)
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The �rst two equations are for each discs, namely Nd equations, the last two equations are for each pairs of
discs in collision, namely Np equations. This system of Nd+Np unknowns can also be solved with a Gaussian
reduction.

Volume forces applied on a disc The volume force b that is applied on the disc of penalised �uid is as
follows:

b =
Vtarget − Vcurrent

δt
(21)

A test on the disc velocity is done: the volume forces are applied on the disc until the error between the
target value and the velocity value is less than 1%. This usually takes less than 5 time steps and in the worst
cases, the force is stopped after 10 time steps.

3 Preliminary results

3.1 Validation for the collision between two discs

To assure the resolution of the velocities after the collision, simulations are performed with two discs. The
positioning of the discs is shown on the Figure 4. The two discs have the same radius R = 0.1m. The disc

D1 is accelerated to a velocity
−→
V1 = V −1

−→x with V −1 = 1m.s−1, the velocity of the disc D2 is null. The
distance x is �xed for all computations to 0.5m and the distance y varies from 0 to 2R. Velocities results
after the collision computed by the subroutine and compared with the one computed with a python routine
can be found on Figure 5. This python routine solves �rst the collision test discussed in the subsection 2.2
to determined the time of collision, and then solves the system of equation in case of collision between two
discs the system of equation that gives velocities after the crash. The values are the same for almost all
simulations, except some values for the disc D1 around y = 0.14m but the error is very small.

Figure 4 � Scheme of the simulation
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Figure 5 � Comparison of the velocities after the collision between the python routine and Thetis simulation.
In blue: python results, in red: Thetis results; circle: disc D1, square: disc D2

Other validation cases are still ongoing. They encompass the validation of the drag around a cylinder at
high Reynolds, the fall of a cylinder and the interaction with the free surface and other experiments involving
a slide made up of several cylinders and generating a wave. The objective is to determine the required amount
of cells to resolve satisfactorily the �uid/solid interaction.

3.2 Collision between several discs and water entry

The following results are just example of simulations without validations but they illustrate the long term
objectives of this work.

Water entry One of the advantages of using the penalty method to model solid bodies is that the interac-
tions with �uids are solved directly in the Navier-Stokes code. Simulations can be run with three �uids (air,
water and penalised �uid). It has been possible to compute the fall of a rigid disc into a water reservoir after
bouncing on the bottom boundary. The disc arrives into water with an oblique velocity and create a splash.
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Figure 6 � Simulation of a disc of penalised �uid (red) falling into a water reservoir (grey), blue �uid is air,
colour lines show the direction and amplitude of velocity of the �uids, the black arrow shows the direction of
the disc velocity

Simulation with more than two discs To illustrate the collision between more than two discs, a simu-
lations with 16 discs has been run. The subroutine managing the collisions is still in development. Although
the following results have not been validated with experiment or another code, they show the potential of
this method concerning the solid/solid interactions.

Figure 7 � Simulations of 16 discs of penalised �uid falling on a slope

With the possibility of three �uids simulations and multiple rigid bodies, computations of landslides
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composed of several solid blocs and sliding into water can be imagined. We are of course far from the resolution
of the complex grain/grain interactions at all the scales and in 3D. But this approach can help simulate
and better understand simple but relevant cases of academic multi-block slides in interaction with water.
Furthermore, coupled with a macroscopic soil rheology such as µ(I) (GDR MiDi [6], Jop et al. [11], [12]) for
instance, it can allows to simulate in a original way a real slide taking into account the interaction of the larger
blocks explicitly with the penalty method while the �ner soil portion would be modelled macroscopically.

4 Conclusions

This paper presented a new model of rigid bodies of penalised �uid in interaction for simulations of waves
generated by landslides. It consists of a subroutine that manages the solid/solid interaction in a Navier-
Stokes model with VOF interface tracking. By contrast with other work, the landslide is model as several
rigid bodies and there is no external code to compute their motions. First validation simulations have been
realised. The main conclusions are as follows:

� A �rst validation comparing to a python routine showed that the subroutine succeeds in detecting the
collision, computing and applying the new motions after the crash.

� Thanks to this model, the solid blocks are able to interact with boundaries, �uids and other rigid bodies
as simulations with several blocks and water reservoir pointed out.

The validation process is still in progress. To validate the e�ort on the rigid disc, a simulation of a high
Reynolds �ow around a �xed disc of penalised �uid is run. The value of drag coe�cient and distribution of
pressure can be compared with experimental data. Other validation cases will be run once experimental data
are available like the fall of a cylinder into water and the sliding of several cylinders on an incline and into
water. This validation cases aim to determined the minimum resolution of the mesh to ensure the satisfactory
solving of the �uid/solid interaction.
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