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Abstract

Towing a ship with a kite enables fuel saving. However, a dynamic kite flight can alter the ship
equilibrium. The course-keeping relative to a true wind angle may be an issue. Consequently, a
dynamic model of ship with kinematic kite model is developed. The ship dynamic model is based
on a parametric maneuvering model. This model is validated through full scale trials of 13 m long
fishing vessel. The comparison between the experiments and the model are satisfactory. Subsequently,
a study on the influence of the longitudinal position of the tether attachment point is proposed. From
a simplified method based on the ship maneuvering model, the drift angle is evaluated and an objective
function to optimize the kite flight trajectory is determined. This function takes into account the ship
resistance induced by the drift. For the case of study, the kite trajectory is optimized for a sailing at
135° of true wind angle and at the ship cruising speed. The computation of the motions shows that
the more the tether attachment is backward, the more the propeller power required is low. Indeed,
with a tether attachment point backward, the yaw balance requires that the rudder apply a transverse
force opposed to the kite transverse force. Therefore, the drift angle is lower. Between two tether
attachment points spaced of 3.2 m, the power saving is 8.85 % for the forward position and is 84.71
% for the backward position. This paper shows the high sensibility of the tether attachment position
on the course-keeping and the performance. Due to the dynamic perturbations induced by the kite,
an alternative rudder angle is required to follow an heading. For a given autopilot, the results shows
that it exists an optimal tether attachment point to limit the rudder angle amplitude required for
course keeping.

Résumé

La traction des navires par cerf-volant permet d’économiser du carburant. Cependant, le vol
dynamique de cerf-volant peut modifier sensiblement l’équilibre d’un navire, et le suivi d’un cap par
rapport au vent peut être problématique. Ainsi un modèle dynamique de navire avec un modèle
cinématique de cerf-volant est développé. Le modèle de dynamique du navire est basé sur un modèle
paramétrique de manoeuvrabilité. Ce modèle est validé avec des essais de manoeuvrabilité effectué
à l’échelle réel sur un navire de pêche canadien de 13 m de long. La comparaison entre le modèle
et les résulats experimentaux sont satisfaisant. Par la suite, une étude de l’influence de la position
longitudinale sur le navire du point d’attache des lignes du cerf-volant est proposée. A partir d’une
méthode simplifiée basée sur le modèle dynamique du navire, l’angle de dérive est évalué et une
fonction d’optimisation prenant en compte la résistance induite par la dérive est dévelopée. Pour le
cas d’étude, la trajectoire du cerf-volant est optimisée pour une navigation à 135° du vent réel et à
la vitesse de croisière du navire. Par la suite le calcul des mouvements du navire montre que plus
le point d’attache est reculé, plus la puissance de l’hélice nécessaire à l’avancement est faible. En
effet, quand le cerf-volant est attaché plus en arrière, l’équilibre en lacet impose que le safran exerce
un effort transverse opposé à celui du cerf-volant ce qui permet de diminuer l’angle de dérive. Entre
deux positions espacées de 3.2 m l’économie de puissance nécessaire à l’avancement est de 8.85%
pour la position d’attache de cerf-volant la plus avancée et de 84.71% pour la position plus réculée.
A cause des perturbations induites par le cerf-volant sur le navire, une oscillation de l’angle de safran
est nécessaire pour suivre un cap. Les résultats montrent qu’il existe une position d’attache optimale
pour limiter l’amplitude d’angle barre nécessaire à la stabilité de route.
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Nomenclature

R Coordinates system

A Added mass matrix

B Generalized mass matrix (6x6)

C Centripetal matrix

M Generalized mass matrix (6x6)

F Generalized force vector

U Velocity (3x1)

V Generalized velocity (6x1)

A Tether attachment point on the ship

AK Kite area

CB Hull block coefficient

CLK
Kite lift coefficient

CWP Water plane coefficient

DP Propeller diameter

J Propeller advance ratio

KQ Propeller torque coefficient

KT Propeller thrust coefficient

nP Propeller rotational speed

t Thrust deduction factor

w Wake fraction

β Drift angle

δR Rudder angle

ε Ratio of wake fractions among rudder and pro-
peller

εK Lift to drag angle

γ Flow rectification factor

φK Kite azimuth

ρa Air density

ρw Water densiy

θK Kite elevation

Subscripts

AW Apparant wind

C Current

HF High frequency motions

K Kite

LF Low frequency motions

P Propeller

R Rudder

RW Relative wind

S Ship

T Tether

W Wind

Mathematical Symbols

◦ Hadamard product

X Time average

× Cross product

1 Introduction

This work takes place within the research program of the beyond the sea® project to develop kites as
auxiliary propulsion of ship for fuel saving. The first attempt of the project is to refit merchant ship,
from fishing vessel to container ship, to set up a tethered kite. Consequently, the kite design depends
on the ship characteristics from different perspectives such as maneuverability, stability and seakeeping.
Here the purpose of this study is focused on the development of a strategy and dedicated tools to choose
a good tether attachment point on the deck according to the course keeping.

Previously, ships towed by kite have been essentially studied for the purpose of fuel saving predictions.
Naaijen and Koster in [11] and Leloup et al. in [10] have predicted fuel saving assuming an average
kite towing force over a closed kite loop trajectory and solving the ship static equilibrium. In these two
papers, the hydrodynamic forces have been modeled with hull derivatives of maneuvering model of the
corresponding ship. The sway and yaw equilibrium have been checked for their cases of study. Naaijen
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and Koster [11] studied a 50000 DWT tanker with a kite of 500 m2 and Leloup et al. studied [10] the
British Bombardier a tanker ship of 225 m long equipped with a kite of 320 m2. Naaijen and Koster [11]
explained that the tether should be attached at the bow of the ship. Nevertheless, the hull form of a
fishing vessel is different from a tanker and the conclusions of these former studies may be affected.

Consequently, a general approach is proposed here. The dynamic of a ship towed by kite is solved
numerically. Here, the study is limited to calm water. The maneuvering motions are modeled with
the parametric model proposed by Yoshimura and Masumoto [18] validated with a wide range of ship
from fishing vessels to container ships. Regarding the kite modeling, different level of approach are
possible. The simpler one is the so-called zero-mass model introduced by Wellicome and Wilkinson [17].
Leloup et al.[10] provided its analytical formulation. In this model the mass of the kite is neglected
with a straight and mass-less tether. Despite these strong assumptions, Dadd et al. in [5] have shown
favorable comparison with experimental data and the zero-mass model. Here, this model is used due to
its inexpensive computational cost.

First of all, the model of a ship towed by kite is introduced, and based on this model a general simplified
method is presented. Then, a validation case of the maneuvering model is presented with full scale
experiments performed on the Steven Paul a 13 m long fishing vessel equipped of a 50 m2 kite by
[2]. Finally, the influence of the tether attachment location on a fishing vessel course keeping ability is
analysed.

2 Model of ship towed by kite

2.1 Ship modeling
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Figure 1 – Coordinates systems and ship motions
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The coordinates systems used to develop the model are represented in Figs. 1 and 2. R0

(
O0, x0, y0, z0

)
is the earth fixed coordinate system, using the North East Down (NED) convention. RC

(
OC , xC , yC , zC

)
is the current coordinate system. This frame has a rectilinear motion compared to R0 with a constant
velocity vector UC . RS

(
OS , xS , yS , zS

)
is the ship coordinate axis system, rigidly fixed to the ship.

zS points downward, xS points forward, and the y
S

points to starboard. Its origin OS is at mid-ship, in
the intersection between the center plane of the boat and the free surface.

Eq. (1) defines the ship equation of motion with respect to the inertial frame RC expressed in ship
coordinates system RS as formulated by Perez in [13].

[
M

S
+A

S
(0)
]
V̇ S + C

S
V S = F (1)
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M
S

and A
S
(0) are the generalized mass matrix (6x6) and the added mass matrix (6x6) for zero-wave

frequency. The added mass matrix A
S
(0) can be obtain by using the potential flow theory. V S is the

generalized ship velocity vector relative to RC expressed in RS at mid-ship. V S is the assembly of the
linear ship velocity US with the ship angular velocity ΩS . V̇ S is the generalized velocity time derivative.
C

S
is the centripetal matrix (6x6). F is the generalized force vector representing the forces acting on the

ship. F =
[
X, , Y, Z, K, M, N

]T , where the three first components of F represent the forces and
the three last components represent the moments. The generalized force vector F can be decomposed
into the sum of the hull, rudder, propeller and kite contributions such as in Eq. (2), where the subscripts
H , R, P , T and W denote respectively the hull, the rudder, the propeller, the appendages, the tether and
windage.

F = FH + FR + FP + FAPP + FT + FW (2)

The specification of this tool is to cover a wide range of ship, from small fishing vessels to large container
ships. Many maneuvering models are available in the literature but only few of them are parametric.
Yoshimura and Masumoto [18] proposed a parametric nonlinear maneuvering model. They developed
parametric formulations of Taylor’s expansions expressing the forces acting on the hull. This model is
used here for its large range of validity, from fishing vessel of 26 m long to a container ship of 230 m long.

The expression of the propeller thrust is given by Eq. (3).

XP = (1− t) ρwKTD
4
Pn

2
p (3)

The thrust factor, denoted byKT , is considered for an open water propeller. The thrust deduction factor
is denoted by t. The thrust factor is function of the propeller advance ratio, denoted by J and expressed
with the wake fraction w in Eq. (4).

J = (1− w)
uS

nPDP
(4)

The thrust deduction factor and the wake fraction can be determined with semi-empirical formulas such
as those formulated by Weingart in Eq. (5) described in [8].

t = w

(
1.57− 2.30

CB

CWP
+ 1.50CB

)
(5)

Where CWP denotes the water plane coefficient and CB denotes the hull block coefficient. The hull block
coefficient is calculated with the mid-ship draft without considering the false keel in accordance with
Yoshimura and Masumoto [18].

The rudder forces can be obtained according to the formulation proposed by Söding in [15]. This model
has the advantage to be still valid for high angles of attack. The determination of the rudder inflow
velocity is one of the most difficult task for naval engineers. Indeed, the inflow depends on the hull, the
propeller and the rudder configuration and on the interactions between them. However, the determination
of the exact inflow velocity into the whole fluid domain is not the objective here. Nevertheless, modeling
these interactions cannot be avoided. Thus, it can be found in the literature several empirical formulas
to describe the phenomena. Here, the formulation provided in Yoshimura and Masumoto [18], Eq. (6) is
retained in order to have a parametric formulation of the interaction coefficients.{

uC,R = −uSε (1− w)

√
η
[
1 + kx

ε

(√
1 + CTH − 1

)]2
+ (1− η)

vC,R = −γ (vS − 0.9LrS)
(6)

The dependency of the rudder inflow velocity with propeller thrust is modeled with the interactions
coefficients ε and kx defined with semi-empirical formulas by Yoshimura and Masumoto [18]. η denotes
the geometric ratio between the propeller diameter and the rudder span, η = DP/bR. Downstream from

4



the propeller the axial flow velocity increases, which can be noticed with Eq. 6. The axial rudder inflow
velocity increases with the propeller thrust loading coefficient CTH = 8KT /πJ

2.

The transverse rudder inflow velocity vR depends on the ship turning rate and ship transverse velocity.
The hull tends to decrease the absolute value of the transverse rudder inflow velocity. This effect is
represented by Yoshimura and Masumoto with the flow rectification factor, γ in Eq. 6. For single screw
ship, positive yaw rate maneuvers and negative yaw rate maneuvers are asymmetric. This effect can be
taken into account with two flow rectification factor, γ+ and γ− respectively for positive and negative
turning rate.

Blendermann in [4] provides a semi-empirical expression of the wind load on the deadworks of various
types of vessel. Longitudinal, lateral wind load forces and yaw wind load moments are expressed by
means of coefficient obtained with wind tunnel experiments.

2.2 Kite modeling

A kite is ordinary composed of soft and light material such as textile. The kite shape is basically dependent
of its wind loading. An ideal kite model should take into account the complete fluid structure interaction
with finite deformation. Nevertheless, a kite is very lightweight structure compared to its aerodynamic
load. Consequently, numerous studies on the dynamic kite flight motions have been carried out with the
so-called zero-mass model, for instance Wellicome and Wilkinson [17], Naaijen et al. [12], Dadd et al. [6]
and Leloup et al. [10]. Moreover, Leloup et al. [10] provide an analytical formulation of the zero-mass
model. This analytical formulation has the benefit to be fast to compute. The mass of the tether and
the kite are neglected and the tether is assumed to be straight. Consequently, for any configurations the
tether tension is opposed the aerodynamic kite force, Eq. (7).

TK = FA/K (7)

Fig. 3 illustrates the notations used for the zero-mass model. RRW is the relative wind coordinates
system moving at the tether attachment point velocity. The relative wind velocity defined in Eq. (8) is
the difference between the true wind velocity at the kite location and the velocity of the tether attachment
point compared to R0. The direction of the relative wind velocity is xRW . y

RW
is defined as: y

RW
=

z0×xRW∥∥z0×xRW

∥∥ . In order to define a direct orthonormal coordinates system zRW is defined as follows: zRW =

xRW × y
RW

. The relative wind velocity to the tether attachment point URW and the apparent wind
velocity to the kite UAW relative to the kite are defined respectively in Eqns. (8) and (9).

URW = UTW − UA − UC (8)

UAW = URW − UK (9)

In order to represent the wind friction with the sea, the true wind velocity is function of the altitude
according to the wind gradient law recommended by the ITTC [1]. The measurement altitude of the
wind relative to the sea level is denoted by zref . The wind velocity at zref is denoted by Uref . The wind
gradient parameter n is equal to 1/7 as recommended by [1].

UTW =
(
Uref − UC

)( z(0)K

z
(0)
ref

)n

+ UC (10)

For a given lift-to-drag ratio angle denoted by εK , a given kite velocity direction xV K , the kite velocity
relative to the tether attachment point, is written Eq. (11).

UK = URW

xV K · xRW +

√
(xV K · xRW )

2
+

(
zK0 · xRW

sin εK

)2

− 1

xV K (11)
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Figure 3 – Coordinate systems used for the development of the zero-mass model

Finally, the tether tension is given by the following formula:

TK = −CLK
ρAAKU

2
AW

2 cos εK
zk0 (12)

The generalized tether force vector acting on the ship at OS is expressed as follows:

FK =
[
T

(S)
K OSA

(S) × T
(S)
K

]T
(13)

2.3 Ship and kite control

During a simulation, rather than to constrain a degree of freedom, an automatic pilot is implemented
in order to compute the required rudder angle to perform a maneuver or to follow a constant heading.
The automatic pilot implemented is a PID-controller (Proportional Integrator Derivative) of the form
proposed by Fossen in [7]. Based on this design of PID-controller, the propeller speed is control to reach
a required ship velocity.

The kite velocity direction xV K is controlled in order to perform eight trajectory. θref and φref are the
elevation and azimuth of the trajectory on the sphere of center A and radius LT . The center of the
trajectory C8 is positioned at

(
φ8, θ8

)
. Eq. (14) defines elevation and azimuth of the eight parametric

curve.

{
θref = ∆θ8 sin (2ξ)

φref = ∆φ8 sin(ξ)
(14)

The eight trajectory can be rotated of an angle χ8 around C8A. For a given elevation θK and azimuth
φK on a sphere of radius LT , the corresponding cartesian coordinates in RRW are defined as follows:

 LT cos θK cosφK
LT cos θK sinφK

−LT sin θK

 (15)

2.4 Resolution of equations of motion

The equation of motion of the whole system is expressed in the form of a first order differential equation
in Eq. (16).
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

V̇ S

Ẋ
(C)

S

Ẋ
(C)

K


=



mf ◦
(
M

S
+A

S
(0)
)−1 (

F − C V S

)
[
T (C)

S
O

3

O
3

R(C)

S

]
V S

URW

[
xV K · xRW +

√
(xV K · xRW )

2
+
(

zK0·xRW

sin εK

)2
− 1

]
xV K + UA


(16)

mf is the considered degree of freedom vector. “◦” is the Hadamard product. In this study, only surge
sway and yaw motions are considered, consequently mf = [1, 1, 0, 0, 0, 1]

T . For any vector, x expressed
in RS , its image in RF is obtained thanks to the direct cosine matrix T

S
as follows:

T
S
=

 cosψS cos θS sinψS cos θS − sin θS
sinψS cosφS + cosψS sin θS sinφS cosψS cosφS + sinψS sin θS sinφS cos θS sinφS
sinψS sinφS + cosψS sin θS cosφS − cosψS sinφS + sinψS sin θS cosφS cos θS cosφS

 (17)

The ship angular velocity expressed in RS is ΩS = [pS , qS , rS ]
T . Eq. (18) is the relationship between

the angular velocity and the time-derivatives Euler’s angles.

ΩS = R(S)

C
Φ̇S (18)

Where, R(S)

C
is:

R(S)

C
=

 1 0 − sin θS
0 cosφS cos θS sinφS
0 − sinφS cos θS cosφS

 (19)

The equations of motion are solved numerically with the 4th order Runge-Kutta numerical scheme.

2.5 Simplified model

Since the kite can induce a yaw moment, an appropriate attachment position of the tether should be
determined. Assuming that this appropriate position should keep the mean rudder angle at zero, the
longitudinal attachment position of the tether xA can be estimated according to this simplified approach.
Considering the time average of the kite forces, the corresponding static equilibrium of the ship in surge
sway and yaw can be simplified as follows:


−RTBH(us) + qLdem

(
X

′

βSβS
β2
S +X

′

βSβSβSβS
β4
S

)
+XK +XP = 0

qLdemY
′

βS
βS + Y K + 2πqARβS = 0

qLdemN
′

βS
βS + xA

L Y K − πqARβS = 0

(20)

Where q denotes the dynamic pressure, q = 1
2ρwU

2
S . In Eq. (20) the longitudinal rudder force has

been neglected. The interactions between the rudder and propeller have been neglected. The transverse
rudder force is assumed to be equal to the lift of a plate without taking into account the 3D effects.
Only the first order of the hydrodynamic sway force and hydrodynamic yaw moment have been taken
into account. Consequently, considering the sway and yaw equilibrium equations, the tether attachment
position leading to a zero rudder angle is given in Eq. (21).

xA = L
LdemN

′

βS
− πAR

LdemY
′
βS

+ 2πAR
(21)
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According to the parametric hull derivatives formulas of Yoshimura and Masumoto [18], Eq. (21) becomes:

xA = L
2Ld2em

(
1− 0.85 tS

dem

)
− πAR

Ldem (πdem + 1.4CBB)
(
1 + 0.54

t2S
d2
em

)
+ 2πAR

(22)

Moreover the drift angle can be expressed as a function of the transverse kite force, Eq. (23).

βS =
−YK

q
(
LdemY

′
βS

+ 2πAR

) (23)

According to the surge static equilibrium, the transverse kite force has a negative effect on fuel saving.
Naaijen and Koster in [11] and Leloup et al. in [10] have neglected the drift motion induced by the
kite for fuel saving calculation and for kite flight trajectory. Assuming, the drift angle is small, at the
first order, uS ≈ Us. Consequently, a simplified power saving ratio can be determined according to the
simplified approach in Eq. (24).

η∗K =

q

(
X

′

βSβS

Y 2
K

q2
(
LdemY

′
βS

+2πAR

)2 +X
′

βSβSβSβS

Y 4
K

q4
(
LdemY

′
βS

+2πAR

)4

)
+XK

RTBH(us)
(24)

3 Case of study and experimental setup

Figure 4 – Steven Paul fishing vessel Figure 5 – beyond the sea® kite of 50 m2

The case of study presented here is a 13 m long fishing vessel named Steven Paul (cf. Fig. 4) and
equipped with a kite of 50 m2(cf. Fig. 5). General characteristics of the system are resumed in Tab. 1.

The whole data acquisition system is based on a National Instruments CompactRIO platform. It consists
of 3 main parts: a set of I/O modules depending on sensor technology, a Field-Programmable Gate Array
(FPGA, NI CRIO-9114) and a Real-Time processor (NI CRIO-9024). All I/O modules are connected to
the FPGA, and the very accurate clock of the FPGA ensures a good synchronization between the channels,
and precise acquisition frequencies. The Real-Time processor logs all data coming from sensor through the
FPGA on a non-volatile memory. To measure motions and velocities of the boat, an Inertial Measurement
Unit (IMU) coupled with a Global Positioning System (GPS) was set up (Xsens MTi-G-700). This Unit
includes a microprocessor able to realize data fusion, based on an extended Kalman filter providing roll
and pitch information. Manufacturer ensures dynamic error for roll and pitch under 1° with a 1σ RMS
error of 0.1°. The acquisition frequencies of the Xsens were 50Hz for inertial sensors (gyroscope and
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Ship Propulsion
Length Overall 13.39 m Motor Caterpillar 3408 - 480hp
Length of waterline 12.89 m Propeller Kaplan 19-A 4 blades
Length between perpendiculars 12.28 m Propeller diameter 1.30 m
Beam of the hull 5.61 m Pitch ratio 1.015
Displacement 64 t Blade area ratio 0.55
Mid-ship draft 1.75 m
Trim 1.0 m
Hull block 0.51

Rudder Kite
Area 1.23 m2 Area 50 m2

Span 1.37 m Lift to drag angle 9.46°

Chord 0.9 m Lift coefficient 0.72
Tether length 60 m

Table 1 – General characteristics of the fishing vessel Steven Paul (trial condition) and kite; The trim is
defined in accordance to Yoshimura and Masumoto [18]

accelerometer), 20 Hz for roll and pitch, and 5Hz for all data regarding GPS technology (position and
velocity). To avoid complex and unreliable calibration procedure of magnetometers, it has been decided
to use an existing on board sensor to get yaw information, based on dual antenna GPS, instead of yaw
information provided by the magnetometers of the Xsens IMU. The sensor was a Si-Tex Vector Pro, with
1σ RMS error under 0.3°.

A device measuring the torque on the propeller shaft, developed by the company UpDaq, had also been
installed previously on board. A strain gauge had been stuck on the shaft and is linked to an amplifier,
sending data wirelessly to a receiver in the wheelhouse. The latter was connected to the acquisition
system through a serial link. The torque on the shaft was logged at 20Hz.

The measurement of rotational speed of the shaft propeller was carried out thank to a binary sensor,
going from 0 V to 5 V each time the magnet stuck on the shaft passes nearby the sensor. The sensor was
directly linked to the Digital Input module (NI 9411) of the compactRIO system. The rotational speed
of the shaft was logged at 20Hz

4 Maneuvering model validation without kite

The resistance and the power characteristics are identified with the experimental data collected during
a power test. For five different quasi-steady states of engine power, the ship velocity over ground, the
propeller rotational speed and the torque on the shaft are measured. In order to obtain the ship velocity
with respect to the free surface, the current velocity UC is identified according to the IMO Resolution
A.751 (1993) with a turning circle done just before the power test. For each steady state the torque
coefficient can be identified with the following relationship:

Kexp
Q = ηSSB

Q
exp

SSB

ρwn
exp
P

2
D5

P

(25)

Where, Qexp

SSB denotes the torque measured on the propeller shaft after the shaft stuffing box and ηSSB

denotes the shaft stuffing box efficiency. The shaft stuffing box efficiency is assumed to be equal to 0.97 as
recommended by Bertram in [3]. Assuming that the Steven Paul propeller is equivalent to Kaplan 19-A
of diameter 1.30 m, of pitch ratio of 1.015 and of blade area ratio of 0.55, the wake fraction is estimated
according to Eq. (26) for each quasi-steady state of the power test:

Kexp
Q = KQ

(
J = (1− w)

uexpS

nexpP DP

)
(26)
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The torque coefficient denoted by KQ is determined according to the regression model proposed by Kuiper
[6]. Consequently the estimated value of the wake fraction is 0.39. The left hand side and the right hand
side of the system in Eq. (26) are plotted in Fig. 6. The predicted wake fraction according to the
semi-empirical formula of Hecksher for trawlers, described in [3], is w = 0.32. The estimated value of
the wake fraction is higher than predicted by Hecksher but this can be explained by the presence of a
protection cage upstream of the propeller. This cage may drastically decrease the mean inflow velocity
on the propeller disk area. According to Eq. (5) a thrust deduction factor of 0.34 is obtained. Finally,
the total resistance of the bare hull in Eq. (27) is plotted in Fig. 7.

RTBH =
(1− t)KT

DPK
exp
Q

ηSSBQ
exp
SSB +X +XAPP (27)

In order to validate the Steven Paul maneuvering model, one turning circle of each side has been tested.
The ship motions during the maneuvers are computed using the experimental rudder angle and the
experimental propeller rotational speed as inputs. The two time series at the bottom of Fig. 9 represent
respectively the experimental rudder angle and the propeller rotational speed. In addition, in Fig. 9, ship
velocity (surge and sway) and yaw turning rate are plotted. The computed ship path and the measured
ship path are compared in Fig. 8.

It can be noticed an important asymmetry between the port-side turning circle (denoted by triangle
markers) and starboard turning circle (denoted by circle marker), therefore custom values of the flow
rectification factor has been used for each turning sides,

(
γ+, γ+

)
=
(
0.92, 0.70

)
. These values have

been optimized in order to obtain the same turning radius than the trials. According to the semi-empirical
formula of Yoshimura and Masumoto in [18], the mean flow rectification factor is 0.63.

The transient part until 10 s and the steady part after 10 s can be distinguished. A good agreement can
be noticed for the surge and sway velocity and the yaw turning rate during the steady part of the motion.
Regarding the transient part of the turning circle, the decelerating of the simulated surge velocity is lower
than the experiments especially on port-side. Moreover, a delay is observable in term of yaw motion in
Fig. 9, which is confirmed in term of ship path. Despite the observable differences, especially for the
transient part, the maneuvering model is satisfactory according to the measurements uncertainties and
the usual maneuvering validation results available in the literature Stern et al. [16].
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Figure 9 – From the top to the bottom respectively
time series of: surge and sway velocity; yaw turn-
ing rate; rudder angle; propeller revolution per
second. Dashed and solid lines denote respectively
the experimental data and simulated data; black
triangle and red circle marks denote respectively
the turning circles to portside and to starboard

5 Course keeping results

The results are computed for the Steven Paul cruising speed of 3.5 m.s-1. The true wind angle sets for the
case of study is βTW = 135° and with true wind speed of 7.5 m.s-1at an altitude of measurement of 10 m.
This wind wind condition is favorable for the use of a kite in a dynamic flight. The eight trajectory azimuth
amplitude and elevation amplitude are arbitrary set to respectively ∆φ8 = 40° and ∆θ8 = 8°. According
to Eq. (24), the center of trajectory and the trajectory orientation are optimized with a Bayesian process
routine implemented in Python [14]. The optimal center of trajectory is C = (23.3°, 20.4°) and the
optimal trajectory orientation is χ8 = 0°. With this simplified approach the simplified power saving ratio
(cf. Eq. 24) is η∗K = 34.2% and the expected drift angle (cf. 23) is βS = 3.0°. According to Eq. (22), the
longitudinal tether attachment position leading to a zero mean rudder angle is xA = 1.76 m with respect
to OS at mid-ship.

According to the full presented model, the ship motions have been computed with three different longi-
tudinal attachment positions. The first one is the actual position of the experimental system settled up
on the Steven Paul xA = 3.2 m. The second one is computed with a tether attachment position on the
deck leading to zero mean rudder angle, xA = 1.2 m and the third one is at mid-ship, xA = 0.0 m. Roll,
pitch and heave motions are not considered. The propeller speed and the rudder angle are controlled by
an autopilot. These results are computed with a time step of 0.05 s over 200 s of motion simulated. Only
the last 20 s of simulation are presented in order to avoid the transient part. In Fig. 10, from top to
bottom the drift angle, the rudder angle and the power saving ratio are plotted against time.

The power saving ratio is defined by Eq. 28, where WQP
is the power delivered by the propeller with

kite and W ∗
QP

is the power delivered by the propeller without kite.

ηK =
W ∗

QP
−WQP

W ∗
QP

(28)
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Figure 10 – From the top to the bottom: drift angle βS , rudder angle δR, power saving ratio ηK ;
configuration xA = 0.0 m; configuration xA = 1.2 m; configuration xA = 3.2 m

Tether attachment position xA 0.0 m 1.20 m 3.2 m
Drift angle βS Average 2.35° 2.86° 3.68°

Rudder angle δR
Average 5.6° −0.22° −4.09°

Amplitude 4.61° 4.05° 7.20°

Power saving ratio ηK Average 84.71 % 59.85 % 8.85 %

Table 2 – Time average values of the the ship motions and rudder angle amplitude

The mean values of the simulated motions are reported in Tab 2.

6 Discussion

According to the simplified analysis the expected longitudinal position of the tether leading to zero mean
rudder angle should be xA = 1.76 m, with associated drift angle of 3°. With the dynamic simulations
this attachment point is further back at xA = 1.2 m corresponding roughly to the same drift angle of
2.86°. This result can be verified in Fig. 10, the rudder angle oscillates around δR = −0.22°. Indeed, the
propeller rudder hull interactions effects are not taken into account by the simplified analysis. Nevertheless
the corresponding drift angle is correctly estimate with the simplified method compared to dynamic
simulation. According to the maneuvering model derivatives of Yoshimura and Masumoto [18], the first
order of the transverse force induced by the drift seems to be enough to correctly evaluate the drift
angle. The simplified power saving ratio (cf. Eq. (24)) should not be used directly to evaluate the power
saving since the propeller efficiency is not considered. However, this simplified power saving ratio may
be convenient to optimize the kite trajectory.

The study on different tether attachment position shows that the power saving increase with a backward
tether attachment point. With the actual tether position on the Steven Paul, xA = 3.2 m forward to
the mid-ship, the mean power saving is 8.85 %, whereas with further backward position the mean power
saving increase drastically to 59.85 % with xA = 1.2 m and to 84.71 % with xA = 0.0 m. This could
be explained with the drift angle and the rudder angle. The more the tether position is backward, the
lower is the absolute mean value of the drift angle and higher is rudder angle. With the actual tether
position xA = 3.2 m the ship is lee helm, therefore the rudder angle is negative to counteract the yaw kite
moment. Consequently, the transverse force of the rudder is positive leeward to the ship as the transverse
kite force. Only the hydrodynamic hull transverse force due to the drift can counteract this two positive
leeward transverse forces. On the contrary, with a weather helm ship the rudder and the hull counteract
the kite transverse force. Therefore, the absolute value of the drift angle is higher for a weather helm
ship than for a lee helm ship. Power saving is drastically higher on a weather helm ship than for lee helm
ship. Another possibility to decrease the drift angle could be to add a centerboard.

In Tab. 2, it can be observed that the lower rudder angle amplitude is with a tether attachment point
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at xA = 1.2 m. An optimal tether attachment point can be found to limit the necessary rudder angle.
With this approach, the rudder angle amplitude depends on the autopilot. Nevertheless, this highlights
the importance to design dedicated rudder and dedicated automatic pilot for ship towed by kite.

Further investigations should be achieved in order to increase the power saving and to increase course-
keeping stability. Two angles can be highlight to study this issue, one on the general design of the ship
and an other on the control of the ship.

7 Conclusion

A model and a numerical scheme has been presented to take into account the low frequency motion
induced by the kite. A validation of the maneuvering model has been done on Canadian fishing vessel
equipped of kite. A simplified approach to evaluate the drift angle and the tether attachment point has
been developed. This simplified approach enables to predict with good agreement the mean drift angle
compared to the result given by the dynamic model. Moreover, according to this simplified approach
an objective function has been developed to optimize the kite trajectory taking into account the ship
resistance induced by the drift motion. The analysis of the influence of the longitudinal tether attachment
point on the deck shows a high sensitivity on the power saving. More precisely, the mean rudder angle
for course keeping and drift angle can drastically change the power saving. The importance of the tether
attachment position on course keeping and performance has been shown and assessed for three cases.
The computation of the motions shows that the more the tether attachment is backward, the more the
propeller power required is low for the cases tested. For a given autopilot, the study shows that it exists
an optimal tether attachment point to limit the rudder angle oscillation required for course keeping.
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