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Summary 

 

An experimental campaign was previously reported on the slow-drift motion of a rectangular 

barge moored in irregular beam seas. The 24 m long false bottom of the basin is raised and 

inclined at a slope of 5% from 1.05m below the free surface to 0.15m above (see figure 1). 

The barge is moored in different water depths (from 54 cm to 21 cm). The measured slow-

drift component of the sway motion is compared with state of the art calculations based on 

Newman approximation. The principal results are, for the beam sea configuration: 

 at 54 cm depth: good agreement between the experimental results and the Newman 

simulation 

 at 21 cm depth: the Newman calculation overpredicts the forces. 

When the flat bottom set-down contribution is added, the calculated value is much larger than 

the measured one. It has often been observed that the flat bottom expression of this 

component leads to over-conservative second order loads. A second order model is then 

proposed to account for the shoaling effect of a bi-chromatic sea-state propagating in 

decreasing water depth. 

Newman’s approximation provides an estimate of the real part P. Q is mostly a contribution 

of the second order incident part in flat bottom. When R < 1 and      the modulus of 

the QTF is decreased as compared to its flat bottom reference value [8]. 

Application to the model tests shows that, due to shoaling, the set down contribution to the 

slow drift excitation can subtract and not add up to the Newman component . 

A second experimental campaign test is made with the same slope bottom configuration but 

with the barge moored successively in different locations and positions with respect to the 

wave (head, beam and 30°).  

The previous second order model is adapted to take into account the difference of depth 

between the front of the barge and the aft of the barge in the DIODORE
TM

 software. 

For the head sea cases, the Newman approximations under-estimate the low frequency 

motions, and the correction of the set down gives better comparisons with the measured 

values. 
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In parallel to the development of the set-down modified method, a numerical model based on 

the Boussinesq formulation with high order is tested to extract the different components of the 

generated wave on the slope bottom. The tests studied from the campaign in BGO First basin 

are regular waves, bi-chromatic, bi-chromatic+irregular. Analysis of the difference frequency 

component and the set down contribution are emphasized with comparison with semi-

analytical solutions. 

 

I – Introduction 
 

There has been an increasing interest lately for marine operations in shallow water; 

examples are nearshore pipe-laying and LNG terminals. This interest is closely related to the 

expected development of LNG consumption and to ongoing projects of LNG terminal and 

LNG floating storage units. Typically these offloadings terminal or FSRU (Floating Storage 

Regasification units) would be located at 15 m to 30 m of water depth, away from the coast, 

in exposed locations.  

There are many associated hydrodynamic issues, one of them being the prediction of the 

wave induced mooring loads, a second one is the characterization of the components of the 

incident waves, currently taken as a Stokes model. 

As they travel shorewards, ocean waves undergo various transformations over the 

decreasing bathymetry, the most relevant one, for the problem considered here, being a 

transfer of energy from the primary waves to the accompanying long waves. Also known as 

set-down or, in coastal areas, as infragravity waves, these long waves scale with the wave 

envelope signal. 

According to its flat bottom expression [7], the set-down contribution to the second order 

loading increases as the water depth decreases. As a result Newman’s approximations become 

unapplicable and some account must be given to the set-down contribution to the low 

frequency loading. 

In section 2, we describe an experimental campaign, carried out at the BGO-First 

basin in La Seyne sur Mer. A false bottom is raised and inclined so as to achieve a beach, 

over 20 m long inclined with a 5% slope and starting with a depth of 1.05 m. A rectangular 

barge is moored at different locations and submitted to long crested irregular beam, head and 

30°heading seas. The standard deviation of its measured slow-drift sway and surge motion is 

compared with state of the art calculations. Depending of the configurations, it is found that 

the calculations over-predict measurements (beam seas) or under-predict measurements (head 

seas). 

In section 3, we address the problem of the shoaling of the long wave associated with 

a bi-chromatic wave system. A theoretical model is proposed where the varying bathymetry is 

decomposed as a succession of steps, defining rectangular subdomains where the second-

order problem can easily be solved.  

Finally, in section 4, we present the results obtained with the computations of the slow-

drift motion for different dof (degree of freedom) made with the DIODORE
TM

 software, 

upgraded with the formulation proposed in section 3. The up-dated values of the slow-drift 

motion are in good agreement with the experimental values.  
 

II – Experimental campaign 
 

The experiments were performed in the BGO-First offshore tank in La Seyne sur Mer. This 

basin has a total length over 40m and a width of 16m. Thanks to a false bottom, the water 

depth can be varied between 5m and a few centimeters. In these experiments, the 24m false 

bottom was both raised and inclined at a slope of 5%, starting from a depth of 1.05m by the 

wavemaker side and emerging at 15cm at the other end. Figure 1 shows a sketch of the setup. 
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Figure 1 : Experimental campaign configuration 

 

The rectangular barge model as described in [5] was used for the tests. This model has 

a length of 2.47 m, a beam of 0.60 m, a depth of 0.30 m and square bilges. Its draft during the 

tests was 0.12 m, with the center of gravity 0.135 m above the keel line and a roll radius of 

gyration of 0.19 m. Figure 2 shows a picture of the model undergoing tests at an intermediate 

position and with a 30° heading from the wave direction.  

The mooring stiffness was chosen in order to yield a surge, sway and yaw natural period 

around 8.5s. Because of the sensitivity of the dof (degree of freedom) added mass to the keel 

clearance, the mooring stiffness is adjusted to reach always the same natural period (from 8.2s 

to 8.6s). The retained scale factor is 100.  

The barge model was submitted to irregular waves of Pierson Moskovitz spectra with 

peak periods of 1.2 s and 1.6 s. The associated Hs, specified and calibrated with the horizontal 

false bottom at 1.05m depth, are: 

 Tp=1.2 s : Hs = 2 cm, 4 cm, 6 cm; 

 Tp=1.6 s : Hs = 2.5 cm, 5 cm, 7.5 cm. 

During the calibrated tests, the reflection coefficients were found to be less than 2% in all 

wave conditions. 

The water depths at the barge locations are 54 cm, 29 cm and 21 cm.  

The barge motion was measured with the optical system Krypton-Rodym which ensures an 

accuracy better than 1 mm. Test duration in irregular waves was 1200 seconds, meaning 140 

low frequency dof cycles. Through low-pass filtering, the dof slow drift motions were 

extracted from the time series and the standard deviation derived. 
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Figure 2 : Barge model undergoing irregular wave tests at the shallowest position 
 

III – Comparison of the measured slow drift motion with different 

approaches 
 

Drift forces were calculated with the DIODORE
TM

 software of PRINCIPIA at different 

water depths, assuming a flat bottom. The Lagally formulation was used [6]. In the 

calculations, a quadratic damping moment (accounting for flow separation at the bilge) in roll 

was introduced through stochastic linearization [5]. 

A comparison was made between Newman approximation, complete quadratic transfer 

function (QTF) matrix based on a Lagally approach [12] and measured slow drift motion. It 

was shown that to better approximate the results of the experimental tests, the shoaling of the 

set-down has to be taken into account [8] [11]. 

An explanation of the different terms is given below. 

The Quadratic Transfer Function of the slowly varying second order force is approximately 

evaluated by: 

𝑓−
(2)  𝜔𝑖 , 𝜔𝑗  = 𝑃 𝜔𝑖 , 𝜔𝑗  + 𝑖𝑄 𝜔𝑖 , 𝜔𝑗         (1) 

With P the real part, that can be estimated through the Newman approximation  

𝑃 𝜔𝑖 , 𝜔𝑗  ~  𝑓𝑑(𝜔𝑖)𝑓𝑑(𝜔𝑖)          (2) 

and Q the imaginary part, mainly coming from the set down. 

 

The definition of the term Q, set down part, is given in [8]. 

The first standard deviation of the slow drift sway motion (normalized by the significant wave 

height squared) from measurements and from calculations showed that the values computed 

with the Newman approximation and the added of the set down term over-estimated the loads.  

(previous results) 

 

Tp=1.6s, Hs=2.5cm  h=54cm h=29cm h=21cm 

Y/Hs
2 

measured (m
-1

) 15.8 12.3 11.3 

Y/Hs
2 

computed 

Newman(m
-1

) 
13 14.2 17.6 

Y/Hs
2 

computed Total(m
-1

) 13.6 20.2 35.8 
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 Tp=1.6s, Hs=5.0cm  h=54cm h=29cm h=21cm 

Y/Hs
2 

measured (m
-1

) 15.8 12.3 11.3 

Y/Hs
2 

computed 

Newman(m
-1

) 
13 14.2 17.6 

Y/Hs
2 

computed Total(m
-1

) 13.6 20.2 35.8 

    Tp=1.6s, Hs=7.5cm  h=54cm h=29cm h=21cm 

Y/Hs
2 

measured (m
-1

) 15.8 12.3 11.3 

Y/Hs
2 

computed 

Newman(m
-1

) 
13 14.2 17.6 

Y/Hs
2 

computed Total(m
-1

) 13.6 20.2 35.8 

Table 1: Standard deviation of the slow drift sway motion (normalized by the significant wave 

height squared) with the previous test (sway natural period around 10s) 

 

To approach the measured values, the shoaling of the set-down is taken into account in the 

second order equation. A more detailed bibliography of the transformation of the long waves 

in the coastal zone can be found in [8]. 

The development is made for the two dimensional case of an unidirectional bi-chromatic 

wave group propagating in the normal direction to a bathymetry with parallel depth contours. 

The varying depth zone is assumed to be of mild slope and confined in-between two semi-

infinite regions of constant depths. 

As the bi-chromatic wave group enters the varying depth zone, its primary wave components 

at frequencies 1 and 2 are assumed to shoal according to the ray theory. According to [1], 

unless the bottom slope is very small, the accompanying long wave does not amplify to the 

extent predicted by the flat bottom theory, and its phase relationship with the wave envelope 

deviates from the flat bottom value. This means that the Q component of the QTF equation 

(1) is corrected by some complex factor R(1,2)exp[i((1,2)] so that the QTF becomes 

 

𝑓−
 2   𝜔𝑖 , 𝜔𝑗  = 𝑃 𝜔𝑖 , 𝜔𝑗  + 𝑖𝑄 𝜔𝑖 , 𝜔𝑗  × 𝑅 𝜔𝑖 , 𝜔𝑗  𝑒

𝑖𝑎 𝜔 𝑖,𝜔𝑗     

𝑓−
 2   𝜔𝑖 , 𝜔𝑗  = 𝑃 − 𝑄𝑅𝑠𝑖𝑛𝛼 + 𝑖𝑄𝑅𝑐𝑜𝑠𝛼                                             (3) 

 

A numerical model is the needed that is sufficiently easy and fast to run where R and  can be 

computed for all couples  𝜔𝑖 , 𝜔𝑗   of the wave signal. In the section III.1, such a model is 

presented, based on a second order step model.  
 

III – 1 Second order step model 
 

The considered bathymetry is two dimensional (parallel depth lines), in-between two semi-

infinite domains of constant depths hL and hR. The bottom slope is assumed to be mild, so that 

ray theory can be used to predict the wave transformation, at first order. The first order 

velocity potential is therefore given by 

 

Φ 1  𝑥, 𝑦, 𝑧, 𝑡 = ℛ   −𝑖
𝐴𝑖 𝑥 𝑔

𝜔 𝑖
 
cosh 𝑘𝑖 𝑥  𝑧+𝑕 𝑥  

cosh 𝑘𝑖 𝑥 𝑕 𝑥 
 𝑒𝑖  𝜈𝑖 𝜒 𝑑𝜒

−∞

0  𝑒𝑖𝑘𝑖0𝑦 sin 𝛽𝑖−𝑖𝜔 𝑖𝑡2
𝑖=1    (4) 
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Here x = 0 is the beginning of the varying depth zone, 1 and 2 are the initial propagation 

angles with respect to the x axis (=0 means normal incidence), ki and i are the local wave 

numbers defined by  

 

𝜔𝑖
2 = 𝑔𝑘𝑖 𝑥 tanh 𝑘𝑖 𝑥 𝑕 𝑥         𝜈𝑖  𝑥 =  𝑘𝑖

2 𝑥 − 𝑘𝑖0
2  𝑠𝑖𝑛2 𝛽𝑖     (5) 

 

ki0 is the wave number in the upwave sub-domain and the amplitude Ai varies according to 

(e.g. [10], chapter 3) 

 

𝐴𝑖 𝑥 = 𝐴𝑖0 
𝐶𝐺𝑖0

𝐶𝐺𝑖
(𝑥)

 
𝑘𝑖(𝑥) cos 𝛽𝑖

𝜈𝑖(𝑥)
         (6) 

 

with CGi the group velocity. 

The second order velocity potential, at the difference frequency  = 1 – 2, takes the form 

 

Φ 2  𝑥, 𝑦, 𝑧, 𝑡 =  𝐴10  𝐴20  ℜ 𝜑2 𝑥, 𝑧 𝑒𝑖𝐾𝑦𝑦𝑒−𝑖Ω𝑡        (7) 

 

with Ky=k10 sin 1 – k20 sin 2 

 

𝜑2 𝑥, 𝑧  satisfies the free surface equation (at z=0) 

 

𝑔𝜑𝑧
(2)

− Ω2𝜑 2 = 𝑖 Ω  𝜑1𝑥𝜑2𝑥
∗ + 𝜑1𝑧𝜑2𝑧

∗ + 𝑘110𝑘210 sin𝛽1  sin 𝛽2 𝜑1𝜑2
∗ 

+
1

2𝑔
 −𝑖𝜔1𝜑1 −𝜔2

2𝜑2𝑧
∗ + 𝑔𝜑2𝑧𝑧

∗  + 𝑖𝜔2𝜑2
∗ −𝜔1

2𝜑1𝑥 + 𝑔𝜑1𝑧𝑧   

            (8) 

At z=0, together with the Helmholtz equation 

 

𝜑𝑥𝑥
(2)

+ 𝜑𝑧𝑧
(2)

 −  𝐾𝑦
2𝜑 2 = 0         (9) 

 

in the fluid domain. The no-flow condition on the sea bottom and appropriate matching 

conditions at the upwave and downwave boundaries of the varying depth zone are then added. 

The varying depth zone is then decomposed as a series of horizontal steps, following the 

technique that has been used by many authors to solve the first-order problem (see for 

instance Rey et al. 1992 or Bender & Dean 2003). In each rectangular sub-domain j, of depth 

hj and extending from Aj(x-xj-1)+Bj. A particular solution, satisfying the non-homogeneous 

free surface condition, to the second-order problem is then 

 

𝜑𝑃𝑗

 2  𝑥, 𝑧 =
𝐴𝑗  𝑥 − 𝑥𝑗−1 + 𝐵𝑗

𝑔𝐾𝑦 tanh 𝐾𝑦𝑕𝑗 − Ω2
 
cosh𝐾𝑦 𝑧 + 𝑕𝑗  

cosh𝐾𝑦𝑕𝑗
    

            (10) 

 

The general solution is obtained by adding propagative and evanescent modes satisfying the 

homogeneous free surface equation 

𝜑𝐹𝑗

 2  𝑥, 𝑧 =  
cosh𝐾𝑗0 𝑧 + 𝑕𝑗  

cosh𝐾𝑗0𝑕𝑗
  𝐵𝑗0𝑒

𝑖𝜇 𝑖0 𝑥−𝑥𝑗−1 + 𝐶𝑗0𝑒
𝑖𝜇 𝑗0 𝑥−𝑥𝑗   

+   cos𝐾𝑗𝑚 (𝑥 + 𝑕𝑗 )  𝐵𝑗𝑚 𝑒𝑖𝜇 𝑖𝑚  𝑥−𝑥𝑗−1 + 𝐶𝑗𝑚 𝑒𝑖𝜇 𝑗𝑚  𝑥−𝑥𝑗   

∞

𝑚=1

 

             (11) 
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where the wave number Kjm and jm verify 

Ω2 = 𝑔𝐾𝑗0 tanh 𝐾𝑗0 tanh𝐾𝑗0 𝑕𝑗 =  −𝑔𝐾𝑗𝑚 tanh 𝐾𝑗𝑚  𝑕𝑗      (12) 

𝜇𝑗0
2 = 𝐾𝑗0

2 − 𝐾𝑦
2    𝜇𝑗𝑚

2 = 𝐾𝑗𝑚
2 − 𝐾𝑦

2        (13) 

 

It must be noted that the j0 coefficients are not necessarily real. In the present paper, we only 

consider normal incidence where 1=2=0 and Ky = 0. 

The solution is finally obtained by matching the total second order potentials Pj
(2)

+ Fj
(2)

 and 

their x-derivatives at the successive boundaries, and stating that there are only outgoing 

propagative and evanescent modes at the upwave and downwave boundaries at the variable 

depth zone, superimposed with the locked potentials given by equation of the second order 

potential in flat bottom. See [7] for details. 

In the practical cases that we are interested in the water depth is shallow for the second-order 

subharmonic wave. This means that the evanescent modes in the expansion (11) can be 

neglected. The problem can then be solved in two steps: an ”incident” step where the 

incoming second-order wave is propagated over the variable depth zone, and a “reflection” 

step which requires ad hoc conditions to be formulated at the end of the variable depth zone. 

These conditions present no problem when the waterd epth of the downwave semi-infinite 

region is sufficiently large that the waves do not break. In the case of the experiments in the 

BGO first basin, there is no constant depth down wave region, the wave break and the 

incoming subharmonic wave is partly reflected. The mean to treat this term is explained in 

[7]. In our case, we have chosen to omit the reflection step, too complicate to introduce in a 

simple model and, whereas there is a well-defined phase relationship between the short wave 

envelope and the incoming long wave, it is dubious that there be a strongly deterministic 

phase relationship between the short wave and the outgoing long wave. This suggests that its 

contribution to the low-frequency loading is only weakly correlated with the other 

components.  

 

III – 2 Integration in the DIODORE
TM

 software 

 

The modification of the second order set down is introduced in the DIODORE
TM

 software 

during the computation of the full QTF matrix.  

To take into account the depth variation between the front of the barge and the aft of the barge 

the computation of the factor R(1,2)exp[i((1,2)] is made by step, as illustrated by the 

figure3. 

To minimize the computation time, an “x” step of 20 m was chosen. It permits to have good 

agreement between the measurements and the simulation with the three configurations of the 

barge heading. 
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 Figure 3 : slope step discretization for the factor R and  computation 

 

𝑄𝑇𝐹 𝜔1 , 𝜔2 = 𝑃 𝜔1 , 𝜔2 +  𝑄𝑒(𝑥) 𝜔1, 𝜔2 ∗ 𝑅𝑒(𝑥)𝑒
𝑖𝛼𝑒 𝑥 (𝜔1 ,𝜔2)

𝑥(𝑒𝑙𝑒𝑚𝑒𝑛𝑡 )    (13) 

 

III – 3 Boussinesq model 

 

The so called Boussinesq method was originated by Boussinesq in 1870 [3] for an irrotational 

and incompressible perfect fluid flow with a free surface, considering that waves propagation 

in shallow water is a flow with a nearly uniform horizontal velocity from the bottom to the 

free surface. A particular interest of the method is the reduction of the number of unknowns, 

since a three dimensional problem can be treated as a two dimensional one and a two 

dimensional problem can be reduced to a one dimensional problem. 

Many improvements have been done since and the latest developments allow the simulation 

of waves propagation from shallow water to intermediate water depth. 

Madsen et al. [9] and Bingham et al [2] developed a Boussinesq type methods which use up to 

two different orders of interpolation (N=1 and N=2) of the variables along the vertical 

coordinate. Accordingly differential operators are used to enhance the propagation of waves 

and the shoaling behaviour. This method was used by [8] (N=1) who found a good agreement 

between numerical results and semi analytical approach [7]. Guinot [4] used the (N=2) 

approximation. 

The results obtained from development of Guinot [4] are presented below for the case study 

of the trials run in the BGO First with a sloping bottom. For simulating the propagation of bi-

chromatic waves in the BGO First and on the bottom configuration used for the tests of the 

barge, the simulation strategy is similar to the one adopted by [8]. A first zone located at the 

1.05 m water depth is dedicated to the theoretical wave generation, a second zone at the same 

depth allows for the transition to the numerical model and propagation on a short distance 

before the sloping bottom. Then the linear 5% sloping bottom extends along the 20 m 

horizontal distance and finally a damping zone is located at a 0.05 m water depth. The total 

simulation duration is 12 times the long period associated to the difference frequency of the 

bi-chromatic waves. Fourier based analyses are then run for a time interval equal to the 8 last 

long periods. The study is focused on the low frequency behaviour and especially on the 

evolution of the modulus and phase of the low frequency bounded wave. 

The first method used to separate the incoming and outgoing waves is based on a least square 

analysis of the time signals obtained at different consecutive locations in the tank. An 
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alternative method uses the spatial derivatives of the signal in the frequency domain. It 

appears that the first method gives more regular results at the bottom and top of the sloping 

part of the tank where the slope variation induces some oscillations. 

The results on figure 4 shows the comparison of the results obtained from the semi-analytical 

“step” method and from the Boussinesq model which for the considered couple of period is 

acceptable. Discrepancy happens with increasing steepness for the abscissa x = 18 to 20 m 

where the water depth becomes smaller. For higher steepness the water depth at the top of the 

sloping bottom must be increased to avoid numerical instability. 

 

 
Figure 4 : Bi chromatic waves propagating on the 5% sloping bottom 

T = 1.21 s and 1.38 s and various steepness extending from 1 to 4%. 

The bounded wave amplitude is divided by its value at the largest depth. 

black line :  “step” method 

blue lines : from Boussinesq method 

 

IV – New calculation of the slow drift motion with DIODORE
TM

  
 

As the cases presented in section III, the Quadratic transfer functions are corrected according 

to equation (13) and the standard deviation of the dof slow drift motion are recomputed. 

Results are presented in figure 5 to figure 9 for the different barge locations on the slope.  

For the beam seas, as previously shown [8], Newman’s approximation over-estimates the 

measurements even when the set-down contribution is added. When we take into account the 

shoaling effect on the second order loads, the calculations and the measurements are in good 

agreement. 

For the head seas configurations, the Newman’s approximation underestimates the motion 

whereas the added of the contribution of the shoaling in the set down seems to increase the 

loading and the obtained motions are in the range of the measurements results  
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Figure 5 : Head sea results comparisons (depth=54m) 

 
Figure 6 : Head sea results comparisons (depth=29m) 

 
Figure 7 : Heading 30° surge results comparisons (depth=29m) 
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Figure 8 : Heading 30° sway results comparisons (depth=29m) 

 

Figure 9 : Beam sea results comparisons (depth=20m) 

 

V – Concluding remarks 
 

A simple numerical model that allows to propagate the second-order long wave, associated 

with a bi-chromatic wave group, over a variable bathymetry was proposed and integrated in 

the DIODORE
TM

 software. Even though only unidirectional wave systems, normal to the 

depth contours, are considered here, the model is applicable to the multidirectional case. The 

sole restriction is that the bathymetry should be two-dimensional (parallel depth contours). 

Previously, the model was validated by comparisons with a fully non-linear Boussinesq 

model. 

Experiments were carried out with a rectangular barge moored over the inclined false bottom 

of the BGO First Basin. Accounting for the amplitude and phase modifications of the long 

wave contribution to the second order loads, better agreement is obtained between measured 

and computation slow-drift motion of the barge. To completely validate the method (beam 

seas, head seas and different heading seas), more comparisons will need to be performed. 
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