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Résumé

L’étude présentée porte sur le développement d’un algorithme de reconstruction de
la surface libre de la mer à partir d’observations spatio-temporelle discrètes de celle-
ci au moyen d’une caméra Flash LIDAR. Nous supposons pour l’étude que la caméra
est montée sur un navire et observe à une centaine de mètres à l’avant de celui-ci. Les
positions de la surface libre sont recueillies sur l’avant de la trajectoire du navire. La
géométrie est telle que la densité des observations décroit rapidement avec la distance
d’observation. L’algorithme de reconstruction a premièrement été développé dans le cas
de surfaces aléatoires linéaires uni- et bi-dimensionelles dont les amplitude des coefficients
la décrivant ont été obtenues à l’aide d’une minimisation par moindre carrés de l’erreur
entre les observations et la surface reconstruite. Dans les cas tests présentés, les surfaces
aléatoires ont été générées à l’aide du spectre de Pierson-Moskowitz ou d’Elfouhaily et les
jeux de données d’observations ont été obtenus par le calcul des intersections géométriques
des rayons laser avec les surfaces simulées. Une fois la reconstruction de la surface opérée,
une prévision du profil des vagues à l’avant du navire est possible. Celle-ci est calculée sur
une fenêtre temporelle dépendant non seulement de la durée d’initialisation/d’observation
mais également des longueurs d’onde de vagues qui auront été correctement reconstruites
par l’algorithme. Cependant, pour des états de mer avancés, les effets nonlinéaires se
doivent d’être également pris en compte pour une meilleure reconstruction. Le modèle
Lagrangien ”Choppy wave model” ([6]) est utilisé à cet effet et permet une amélioration
nécessaire de l’algorithme d’inversion.
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Summary

We report on the development of free surface reconstruction algorithms to predict
ocean waves, based on spatial observations made with a high frequency Flash LIDAR
camera. We assume that the camera is mounted on a vessel, in a forward looking position,
and is pointing at some distance ahead of its path yielding a sample of spatio-temporal
wave elevation data. Due to the geometry, the density of measurement points gradually
decreases (i.e., becomes sparse) with the distance to the camera. Free surface reconstruc-
tion algorithms were first developed and validated for linear 1D and 2D irregular surface
models, whose amplitude coefficients are estimated based on minimizing the mean square
error of simulated surface elevations to measurements, over space and time (for a specified
time initialization period). In the validation tests reported here, irregular ocean surfaces
are generated based on a directional Pierson-Moskowitz or Elfouhaily spectrum, and sim-
ulated LIDAR data sets are constructed by performing geometric intersections of laser
rays with each generated surface. Once a nowcast of the ocean surface is estimated from
the (simulated) LIDAR data, a forecast can be made of expected waves ahead of the
vessel, for a time window that depends both on the initialization period and the resolved
wavenumbers in the reconstruction. The process can then be repeated for another pre-
diction window, and so forth. To reconstruct severe sea states, however, nonlinear effects
must be included in the sea surface representation. This is done, here, by representing the
ocean surface using the efficient Lagrangian “Choppy wave model”([6]).
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I – Introduction

In many ocean engineering applications where ocean wave information is needed, it is
often sufficient to use phase-averaged wave data, usually in the form of a directional wave
energy spectrum. For some applications, however, both more accurate and detailed phase
resolved, real time, wave data is required. This is for instance the case when predicting
seakeeping and anticipating the motions of a surface vessel, based on measurements of
the ocean surface made ahead of its trajectory. In such a case, the free surface must
be reconstructed in real time from a limited number of measurements, which requires
applying so-called free surface reconstruction algorithms.

In the last decade new techniques have been proposed in the microwave domain for the
reconstruction of surface elevation maps ([4], [2], [5], [1]), using radar systems at grazing
incidence angles. Here, we report on the development and application of reconstruction
and prediction algorithms for the ocean surface, based on spatio-temporal data acquired
at high frequency by a Flash LIDAR camera. A FLC generates a n × n matrix of laser
rays, providing n2 simultaneous measurements of the distance from the FLC to the ocean
surface. The camera can be mounted on a vessel (on top of a mast), in a forward look-
ing position, pointing at some distance ahead of its path. From the measured data and
the camera’s location and orientation, as well as known vessel’s motions, the elevation
and horizontal position of the measured surface points can be generated in an absolute
coordinate system.

Since laser rays are first reflecting off of the nearest ocean wave crests, the density
of measurement points inevitably gradually decreases with the distance to the camera
even if the horizontal sampling is regular. Hence, this results in a highly spatially non-
uniform distribution of ocean surface elevation values/data (as, e.g., sketched in Fig. 1),
as a function of time (i.e., a spatio-temporal data set), based on which the ocean surface
must be reconstructed.

While a linear reconstruction should be sufficient for the short term forecast of mod-
erate sea states, to better estimate more severe sea states and predict them later in
time, nonlinear effects must be included in the sea surface representation. The existing
nonlinear models, however, were all quite computationally demanding, particularly in a
reconstruction mode. Here, we represent nonlinear sea surfaces using the efficient La-
grangian model Choppy Wave (CW), which was demonstrated to correctly approximate
second-order properties of waves with narrow-banded spectra ([6]) and to be accurate
enough for most sea states, as long as there are limited to decimeter gravity waves. The
CW model is used in the proposed reconstruction algorithms.

Figure 1 – Sketch of flash-LIDAR angle of view of the ocean surface and visualization of
a few rays (1D situation). Measurement points are sparse far from the ship.
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II – Ocean Free Surface Representation

In this work, we consider ocean surface representations based either on linear super-
position of independant waves ([3]) or on the nonlinear CW model, which is an extension
of Gertsner’s wave theory ([6]). kn is defined as a wavenumber (wavelength λn) and ωn

the circular frequency. In deep water, the dispersion relationship writes : ω2
n = gkn.

Hence, the linear superposition of n = 1, . . . , N individual wave harmonics of elevation
An and direction Θn yields the linear ocean surface representation, in the horizontal plane
of coordinates x = (x, y),

η(x, t) =

N
∑

n=1

An cos (Ψn − ϕn) ; Ψn = knxx+ knyy − ωnt (1)

where Ψn are spatio-temporal phase functions, ϕn = 2πRn are mutually independent
(i.e., random) phases, with Rn ∈ [0, 1] a set of uniformly distributed random numbers,
and (kxn, kyn) = kn{x cosΘn + y sinΘn} = kn · x, with kn = kn(cosΘn, sinΘn) = knk̂n,

with k̂n = (cosΘn, sinΘn), the unit wavenumber vectors (where Θn ∈ [0, 2π] denotes a
direction of propagation).

To simplify the following mathematical and algorithm developments, related to free
surface reconstruction, it is more convenient (and numerically accurate) to use the equiv-
alent linear representation,

η(x, t) =

N
∑

n=1

|kn|
−3/2 {an cosΨn + bn sinΨn} (2)

where {an, bn;n = 1, . . . , N} are 2N wave harmonic parameters describing the ocean
surface, with,

an = |kn|
3/2An cosϕn ; bn = |kn|

3/2An sinϕn (3)

The factors |kn|
−3/2 constitute a preconditioning, which anticipates the fact that the

harmonic amplitude coefficients are related to the square root of the energy density spec-
trum (see below). This preconditioning will make for better conditioned matrices in the
reconstruction algorithms discussed later.

The CW ocean surfaces are obtained from linear surfaces, such as Eq. (2), based on
the transformation,

(x, η(x, t)) → (x+D(x, t), η(x, t)) (4)

where D(x, t) is the spatial Riez Transform (Hilbert Transform in 1D) of η. It can be
shown ([6]) that this transformation introduces a phase quadrature with respect to the
original signal ; hence, it writes,

D(x, t) =
N
∑

n=1

|kn|
−3/2 {−an sinΨn + bn cosΨn} k̂n (5)

The nonlinear surface, η̃ is thus implicitly defined as

η̃(x+D(x, t), t) = η(x, t) (6)

In the ocean, we assume that the wave amplitude of each component can be found from
a (discretized) directional energy density spectrum S(kn) = S(kn,Θn) such as,

An =
√

2S(kn,Θn) kn∆k∆Θ (7)
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In the following applications, when generating ocean surfaces (whether linear or nonlin-
ear), we will either assume an omnidirectional discrete Pierson-Moskowitz spectrum (PM)
for fully developed open seas, or a directional discrete Elfouhaily spectrum (EY).

III – Free Surface Reconstruction Algorithms

Assuming a set of observations of the free surface elevation made at M times, using
a LIDAR camera with J active rays (i.e., actually intersecting the free surface), i.e.,
ηj,m = η(xj, tm); l = j, . . . , J ;m = 1, . . . ,M , one wishes to reconstruct the ocean surface
geometry over some specified range of wavelengths : (λr

min, λ
r
max). In the following, we

present reconstruction algorithms based on a linear or 2nd-order (Choppy) representation
of the free surface. These consist in optimizing the values of 2N unknown parameters
(an, bn) by minimizing a cost function expressing the Root Mean Square (RMS) difference
between the reconstructed surface values and the observations.

We validate the proposed algorithms using numerically simulated LIDAR data, ex-
tracted from randomly generated ocean surfaces (i.e., linear or Choppy), having a speci-
fied wave energy spectrum as detailed in the above section. In the validation applications,
both 1D and 2D (linear or Choppy) cases will be presented and discussed.

III – 1 Linear Ocean Free Surface Reconstruction

Here, we assume that the ocean surface is represented by Eq. (2). The simplest mini-
mization of differences between model and observations can be achieved through applying
a straightforward Least Square Method (LSM). To do so, we define a cost function for
the measured spatio-temporal data points ηl (l = 1, . . . , L = J ·M) as,

C =
1

L

L
∑

l=1

(η(xl, tl)− ηl)
2 (8)

where η(xl, tl) are the unknown reconstructed surface elevations and ηl are the observa-
tions. An extremum of this function is reached for,

∂C

∂am
= 0,

∂C

∂bm
= 0 ; m = 1, .., N (9)

Developing these equations yields a linear system of 2N equations for 2N unknown pa-
rameters (m = 1, . . . , N),

L
∑

l=1

N
∑

n=1

|kn|
−3/2{an cosΨml cosΨnl + bn cosΨml sin Ψnl} =

L
∑

l=1

ηl cosΨml

L
∑

l=1

N
∑

n=1

|kn|
−3/2{an sinΨml cosΨnl + bn sinΨml sin Ψnl} =

L
∑

l=1

ηl sinΨml (10)

where wave harmonic phases are defined as, Ψnl = kn · xl − ωntl. This linear system can
be recast in matrix form as

AmnXn = Bn ; Xn = [a1..aN , b1..bN ] (11)

where Xn is a vector made of the 2N unknown parameters,

5



Bn =

{
∑L

l=1 ηl cosΨnl; 1 ≤ n ≤ N
∑L

l=1 ηl sinΨnl; N + 1 ≤ n ≤ 2N

}

(12)

and, Amn the 2N × 2N matrix

Amn =

L
∑

l=1

|kn|
−3/2 cosΨml cosΨnl

Am,N+n =

L
∑

l=1

|kn|
−3/2 cosΨml sinΨnl

AN+m,n =
L
∑

l=1

|kn|
−3/2 sinΨml cosΨnl

AN+m,N+n =

L
∑

l=1

|kn|
−3/2 sinΨml sinΨnl (13)

The linear system (11) is solved at each step of data acquisition using either the
direct Gauss elimination method or, for larger systems, the more efficient iterative method
GMRES.

III – 2 Choppy Ocean Free Surface Reconstruction

Here, we assume that the ocean surface is represented by Eq. (6), using the definition
of D in Eq. (5). As before, we use a quadratic cost function to optimize the reconstructed
surface amplitude parameters (an, bn) with respect to L = M · J spatio-temporal obser-
vations ηl, as,

C̃ =
1

L

L
∑

l=1

(η̃(yl, tl)− ηl)
2 (14)

where yl, in this case, are the horizontal coordinates of the set of observations points on
the surface. For each yl we can find xl such that,

yl = xl +D(xl, tl) (15)

Using this equation in (14) and the implicit definition (6) of the nonlinear surface, we
recast the cost function as,

C̃ =
1

L

L
∑

l=1

(η(xl, tl)− ηl)
2 (16)

where η is the underlying linear surface taken at the horizontal coordinates xl.
The extremum condition is thus still defined by Eq. (9), which results in the same

linear system of equations with however the important difference that now ηl and η are
elevations taken at different horizontal coordinates. As D and thus xl and all Ψnl are
unknown, we need to proceed iteratively to find them jointly with η. Since in Choppy the
nonlinear surface is close to the linear one, we begin the iterative process by assuming that
x
(0)
l = yl (i.e., D = 0). Solving the system of equations yields a first solution (ã

(0)
n , b̃

(0)
n ),
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which allows deriving a better estimate of xl : x
(1)
l = yl − D(0)(x

(0)
l , tl). This iterative

process can thus formally be defined as,

x
(n+1)
l = yl −D(n)(x

(n)
l , tl) −→

(a)
(ã(n+1)

n , b̃(n+1)
n ) −→

(b)
(η(n+1),D(n+1))

(17)
where superscripts in parentheses refer to the iteration number. Step (a) is achieved by
solving the system (11) and step (b) via applying the definition in Eqs. (2) and (5). It
should be noted that the first step is equivalent to a linear reconstruction. In practice,
convergence is reached after only a few iterations. Hence, a nonlinear inversion usually
takes 3 or 4 times longer to compute than a linear inversion.

IV – Reconstruction and prediction of 1D surfaces

IV – 1 The effect of nonlinearities on nowcast and forecast

In this first part, we assume that the data set of observations is constituted of all the
points used for numerically generating the ocean surface. A nonlinear ocean surface is
generated using Choppy, assuming a PM spectrum with a wind speed U19.5 = 10 m.s−1,
yielding a dominant wavelength λp = 83.3 m and wavenumber kp = 0.075 m−1 (Eq. (??)).
A linear surface is first generated using the random phase method, by way of a Fast
Fourier Transform with 1024 points over 200 m (Eqs. (1) and (7)), and then transformed
into a nonlinear surface by applying the Choppy transformation (4).

Both linear and nonlinear free surface reconstructions are performed with Nk = 400
wavenumbers kn, and 10 iterations are used in the nonlinear reconstruction. The recon-
structed wavenumber vector is logarithmically spaced in between kmin = 2π/λmax and
kmax = 2π/λmin, with λmax = 90 m and λmin = 2 m. The observation data set used in the
reconstruction is the whole surface sampling (i.e., with 1024 points). Figure 2(a) shows a
zoom on the simulated and the linear and nonlinear reconstructed surfaces.
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Figure 2 – Linear and nonlinear reconstructions of a time evolving 1D CWM surface : a)
at initial inversion time (t = 0 s) ; b) at the forcasted surface time (t = 10 s)

Because our reconstruction methodology relies on a cost function minimization, we
observe a very good reconstruction at the first time step t = 0 s (Fig. 2(a)), in both linear
and nonlinear cases. Figure 2(b) shows the time evolution (i.e., forecast) at t = 10 s of
the reference and reconstructed linear and nonlinear surfaces, obtained by time updating
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the phase functions Ψs. Figure 3 shows the relative error of the two reconstructions as a
function of the forecasting time. In the figure, errors have been averaged over 10 surfaces
both for statistical purpose and to provide smoother curves. As expected, the nonlinear
inversion provide a more accurate estimation of the propagated surface at forecasted times.
In the presented case, relative error is eight times smaller in the nonlinear inversion.
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Figure 3 – Relative error of the two reconstructions as a function of the forecasting time.

IV – 2 Generation and Reconstruction using 1D LIDAR Data

Here, we consider the same sea state as used earlier, described by a PM spectrum with
U19.5 = 10 m.s−1, and create a simulated LIDAR data set by calculating the geometric
intersections of a series of LIDAR rays with one-dimensional (1D) simulated free surfaces,
as a function of space and time (e.g., Fig. 4). The spectrum has been cut-off in the lower
and higher wavenumber ranges such as kmin = 2π/w and kmax = 2π/dr, where w = 200
m and dr = 0.20 m are the surface length and the spatial sampling, respectively. The
surface length was selected to be larger than the peak spectral wavelength λp = 83.3 m,
and dr is such that λmin = 2× dr, the minimum wavelength present on the free surface.
In the following, we also assume that the LIDAR camera is located at z0 = 10 m above
the ocean mean water level, with its main axis of view pointing at a distance d0 = 100 m
ahead. The vertical aperture is θv = 13 deg. and there are nrv = 64 rays in the vertical
plane. The LIDAR can acquire simultaneous spatial data sets, at up to a 20 Hz frequency
(i.e., every 0.05 s).

Ocean surfaces are generated based on the PM spectrum, as before, using a random
phase method. Here, we use N = 1024 individual wavenumbers distributed over the
selected range, with 512 positive and negative k values.

Figure 5 shows the interface reconstruction algorithm results of simulated LIDAR
data obtained from a unique snapshot of a linear ocean surface. We use Nk = 40 or 400
wavenumbers, logarithmically spaced between 0.07 and 3.1 rad.m−1 (λmax = 90 m and
λmin = 2 m), respectively, in the linear reconstruction algorithm results shown in Figs. 5(a)
and 5(b). Black dots represent the data set of simulated observations. No additional noise,
representing experimental errors, is included at this stage. As expected, the reconstruction
is very accurate over the LIDAR footprint area but the algorithm fails to reconstruct the
surface outside this zone, where the inversion process is not constrained. The footprint
area size is thus a major parameter and should be carefully defined as a function of the
desired reconstructed wavelength interval.
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Figure 4 – Example of 1D LIDAR camera sampling of a nonlinear surface.
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Figure 5 – Linear reconstruction of a time evolving 1D CWM surface. Black dots a indicate
observations on the simulated surface (blue lines). Red lines are reconstructed surfaces
with Nk = : (a) 40 ; (b) 400.
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Additionally, we see that, despite the paucity of data for the more distant waves
resulting from shadowing effects (which is an expected characteristics of LIDAR data), and
particularly behind wave crests, the reconstructed surfaces capture well the salient features
of the actual ocean surfaces, above the 2 m wavelength selected as the higher frequency cut-
off in the algorithm However, as indicated before, the surface sampling process is strongly
non-uniform and the density of sampled points on the sea surface is strongly decreasing
with distance from the camera. Thus, the choice of the optimum number of reconstructed
harmonics (Nk) is highly dependent on the Flash LIDAR illuminating configuration.

The relative error of the reconstruction is plotted as a function of Nk in Fig. 6 for the
specific illuminating configuration used above, i.e.,

ǫ =

√

√

√

√

Nv
∑

l=1

(ηr − ηs)2 ×

[

Nv
∑

l=1

(ηs − ηs)
2

]

−1

(18)

where ηs, ηr and ηs are respectively the simulated and reconstructed surfaces taken
at each sampled point, and the mean elevation of the simulated surface. On Fig. 6, each
marked data point was obtained by averaging the relative error over 10 test surfaces.
We see that a good compromise between accuracy and computational time is obtained
around Nk = 400 harmonics, which corresponds to about ten times the order of mag-
nitude of observations points However, other simulations with higher wind speeds show
that increasing Nk no longer improves reconstruction once the maximum wavelength be-
comes significantly larger than the camera’s footprint size. This confirms that the camera
configuration (e.g., aperture angle) must be adapted to wind conditions.
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Figure 6 – Relative error of linear reconstruction versus number of harmonics

IV – 3 Reconstruction and prediction using time integration

At this point, our inversion scheme suffers from the fact that a data set obtained from
a single snapshot of the surface at a given time does not provide enough information
to discriminate between wave propagation directions (i.e., upwind or downwind in 1D).
Doing so requires a time dependent data set, which has the additional advantage of making
it possible to access some new points on the surface, which may have been hidden by a
foreground wave crest at previous time steps.

As an example, we generated 1D LIDAR data sets, using the previous camera con-
figuration, over a simulated nonlinear CWM surface with parameters : PM spectrum ;
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U19.5 = 7 m.s−1 ; surface length of 200 m ; spatial step of 20 cm. We assumed that waves
propagated in both positive and negative x directions in a dissymmetric manner with :
90% of the spectral energy associated with the wind direction (positive x) and 10% oppo-
site to wind direction (negative x). Maximum and minimum wavelengths were respectively
set to 45 m and 40 cm and the peak wave celerity to cp = 8 m.s−1. The LIDAR frequency
of acquisition rate was set to 2 Hz, and thus a 64 point 1D data set would be obtained
at each 0.5 second. The footprint of the LIDAR camera’s aperture is about 100 m, as
shown on Fig. 4. With 200 reconstructed harmonics spread over positive and negative
wavenumbers, 5 to 7 iterations in CWM inversion algorithm are usually needed.

As remotely sensed waves are moving during time acquisition by the camera, it is no
longer justified to define a relative error between simulated and reconstructed surfaces over
the footprint area. As a practical objective of this project is to derive the best estimate
of the sea state in front of a (moving) vessel, in order to derive the best way to steer
through a given sea state, we define a new zone where the sea state estimate is useful
for the vessel’s path prediction. In the example below, we decided that this “prediction
zone” was spanning about 20 m in front of the vessel (i.e., 20 m in front of the camera
position) and the relative error of the reconstruction would thus be evaluated over this
zone. Hence,

ǫ =
1

ση

√

√

√

√

1

Nz

Nz
∑

l=1

((ηr − ηzr)− (ηs − ηzs))
2, with σ2

η =
1

Nv

Nv
∑

l=1

(ηs − ηs)
2 (19)

where ση is the simulated surface variance, Nz is the number of simulated points in the
“prediction zone” and Nv the total number of point of the simulated surface. ηzr and ηzs are
respectively the mean surface elevation of the reconstructed and the simulated surfaces
over the zone and prediction and ηs is the mean elevation of the whole simulated surface
(usualy zero). Such a definition implies that the error is not sensitive to the wavelenghts
greater than the zone of prediction size. We recall here that the free surface variance
is related to the significant height as, Hs = 4ση. We tested 4 data sets, with different
measuring times, from 0 to 12 seconds (i.e., 1 to 25 snapshots of the surface with a 2
Hz frequency data acquisition), and computed the relative errors, defined by Eq. (19),
between the simulated and reconstructed surfaces.

In Fig. 7, the relative error over the “prediction zone” is plotted as a function of time.
For instance, the red curve labelized Ti = 8 s means that data acquisition took place
between t = −8 seconds and t = 0 seconds. At t = 0 s, remotely sensed waves have not
yet reached the prediction zone and hence the simulated and reconstructed surfaces are
still significantly different. Around t = 15s most measured sensed waves have reached the
“prediction zone” and the relative error reaches a minimum before increasing again once
waves have passed by the vessel. Errors plotted in Fig. 7 are averaged over 40 nonlinear
CWM surfaces, to obtain smoother curves.

Figure 7 shows that the prediction accuracy can not be as good as a mere inversion
of a unique snapshot and is dependent on the acquisition time. First, the entire range of
simulated wavelengths is not inverted and sensed wave are moving with different veloci-
ties which causes an unavoidable minimum error. An alternative error, defined for waves
only belonging to the range of interest, could have been defined, but it could not be used
in practical tests. However, Fig. 7 shows that a prediction is clearly possible and that
time dependent data acquisition is a highly desirable for sea surface prediction. Error
oscillations are related to a bad reconstruction of the low frequency part of the sea sur-
face spectrum. Indeed, limited camera footprint size and limited time aquisition mainly
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Figure 7 – Relative error versus forecasting time in the prediction zone. Aquisition fre-
quency : 2 Hz

impact large scales reconstruction accuracy. In any case, higher the measurement time,
the larger the prediction time window and the smaller the error. More precisely, if one
wishes to predict the sea state “n” seconds in the future, one needs to observe waves in
the wavelength range of interest, which will reach the“prediction zone” in “n” seconds.
A continuous real time inversion will keep the relative error to the minimum level and
is thus the best option. However, for vessel path prediction, sea state forecasting must
be achieved for “prediction zones” near the camera footprint area, rather than close to
the vessel’s stern ; one would expect even smaller errors for these zones. Note, in practical
applications, the useful forecasting zones will also be dependent upon vessel speed. a com-
plete study of the inversion algorithm’s performance as a function of all the parameters
including vessel speed is left for future work.
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