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Résumé 
 

Cet article analyse la dynamique des machines houlomotrices de type grand volet 
situées près du littoral. Deux configurations différentes sont étudiées. La première est un 
houlomoteur unique placé au milieu d'un canal rectiligne, tandis que la seconde est un réseau 
périodique de houlomoteurs. La première configuration recrée la disposition habituelle des 
expériences à petite échelle dans les canaux à houle, tandis que la seconde fournit un schéma 
théorique pour le développement de fermes. Dans le cadre de la théorie linéaire non visqueuse 
en écoulement potentiel, l'application du théorème de Green donne une équation intégrale 
hyper singulière du potentiel de vitesse dans le domaine fluide. La solution est trouvée en 
termes d'une série convergeant rapidement de polynômes de Chebyshev. Il est montré que la 
résonnance des ondes transversales dans les deux dispositions est bénéfique pour accroître la 
performance du système. 

 
 

Summary 
 

This paper analyses the dynamics of large flap-type wave energy converters in the 
nearshore. Two configurations are investigated, both relevant to practical applications. In the 
first one, a single converter is placed in the middle of a channel, while in the second one a 
periodic array of converters is considered. The first configuration recreates the usual layout of 
small-scale experiments in wave tanks, while the second one provides a theoretical scheme 
for on-site development of wave farms. With a linear inviscid potential-flow theory, 
application of Green’s theorem yields a hypersingular integral equation for the velocity 
potential. The solution is found in terms of a series of Chebyshev polynomials of the second 
kind. The resonance of transverse waves in both layouts is beneficial for increasing the 
performance of the systems. 
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I – Introduction  
 

Bottom hinged flaps are efficient means for extracting power from ocean waves [1, 2]. 
One of the most promising devices belonging to this category is the Oscillating Wave Surge 
Converter. The latter is made by a buoyant flap hinged on a foundation at the bottom of the 
ocean, pitching under the action of incoming waves.  The device is linked to a generator, 
which enables power capture from incident waves. The flap width � is much larger than the 
wave amplitude � and is comparable to the wavelength �, so that the body is regarded as 
large. When hit by waves, a large body alters the pattern of the incoming waves and produces 
substantial diffraction. The OWSC achieves consistent efficiency levels due to the high 
diffraction loads acting on the large flap surface, which govern the system performance curve 
[3]. Hence the OWSC is a large, torque-driven device and differs from small devices which 
base their capacity on radiation properties, like for example heaving buoys. As a consequence, 
the dynamics of the OWSC cannot be fully characterised by employing existing theories valid 
for small floats – like the point-absorber theory [4] – but must be described in a different 
fashion. 

Renzi & Dias [5, 6, and 7] derived a new semi-analytical model of the OWSC and 
investigated its behaviour in several configurations of practical interest. Here we shall first 
review the model of [5] and [6] for the OWSC in a channel and for a periodic array of 
OWSCs, respectively. Then we shall discuss the features of such layouts and the unique 
properties which make them differ from analogous systems of other devices. 

Under normally incident waves, the channel and array configurations correspond to the 
same analytical problem [8], which is briefly summarised and solved in Section II. In Section 
III – 1, the channel configuration is considered and the effect of the channel lateral walls on 
the performance of the device is investigated. In Section III – 2, the array configuration is 
analysed as a model for a large wave farm. It is shown that there exists an optimum spacing 
between the flaps, which maximises the power capture of the farm. In such configuration 
there are no transverse propagating modes far from the array, so that energy leakage in the far 
field is minimised. 
 
 

II – Mathematical model 
 

The basis of the mathematical model for the OWSC is provided by [5] and briefly 
summarized here. The device is a rectangular box of width w, hinged along a straight 
foundation at distance � from the bottom of an ocean of constant depth �. The device is in the 
middle of a channel of total width �, as shown in figure 1. The flap thickness is 
mathematically immaterial for the calculation of the velocity potential [5]. Monochromatic 
waves of amplitude �� and frequency � are incoming from the right and have wave crests 
parallel to the flap. As already mentioned, because of the mirroring effect of the channel 
lateral walls, the model also represents an infinite array of OWSCs with spatial period �. A 
plane reference system of coordinates �	, �, �
 is also set, with 	 on the centre line of the 
channel, � along the axis of the plate at rest position and � positive upwards. Assume the fluid 
is inviscid, the flow irrotational and the perturbation time harmonic with period � and 
frequency � � 2�/�. Hence there exists a velocity potential  

 
 Φ�	, �, �, �
 � 	Re���	, �, �
������, (1) 
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Figure 1- Geometry of the system (channel layout) : (a) section, (b) plan view. 

 
where φ is the complex spatial potential. Within the framework of a linear potential-flow 
theory, the potential �	 � 	�� �	�� is the sum of the scattering potential ��, solution of the  
scattering problem where the flap is fixed in incoming waves, and the radiation potential ��. 
The latter solves the radiation problem, in which the flap is forced to oscillate without 
incident waves. In the following, the two problems are considered separately and their 
solutions added to get the total potential. 

 
II – 1 The scattering problem 
 
Following [5], the scattering potential is the solution of the boundary-value problem 

made by the Laplace equation, the kinematic-dynamic boundary condition on the free surface 
and the no flux conditions on the bottom and on the flap, respectively 

  
 ���� � 	0   (2a) 
 ��,
 � ��

�
�� � 0,     � � 0  (2b) 

 ��,
 � 0,     � � ��  (2c) 
 ��,� � 0, 	 �  0, |�| " �/2,  (2d) 

where the subscripts with commas indicate differentiation with the relevant variables [see also 
9, pag. 357]. Assuming �� � �
 � ��, where 

 �� � �# $��� 	cosh )�� � �
cosh )� �����	 (3) 

is the spatial potential of the incident wave, ) is the real solution of the dispersion relation �� � $) tanh)� and $ the acceleration due to gravity, the unknown diffraction potential �
, 
outgoing at large |	|, can be determined by applying the Green integral theorem to the 
governing equations (2a) – (2d). Such procedure yields an integral equation with a singular 
kernel, which is de-singularised via a series expansion in terms of the Chebyshev polynomials 
of the second kind and even order -��, . � 0,1, … , 1 [see Appendix A of 5], thus yielding  

 
�
�	, �, �
 � � 14√2 #$����)	 cosh )�� � �


4$� � $�� sinh� )�6��	 
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(4) 

In the latter expression, <�

���is the Hankel function of the first kind and first order, outgoing 
for large argument, while the 9�� are the complex solutions of a linear system of equations 
which stems from the boundary condition on the flap (2d). The system is solved numerically 
with a collocation scheme [see 5], so that the solution (4) is partially numerical. 

 

II – 2 The radiation problem 
 
The radiation potential ��must satisfy again the governing equation (2a), the boundary 

conditions on the free surface (2b) and on the bottom (2c) and the kinematic condition on the 
flap: 

 ��,� � #�Θ	�� � � � �
<�� � � � �
, 	 �  0, |�| " �2, (5) 

 
where D��
 � Re�Θ������ is the rotation of the flap and < is the Heaviside step function, 
which in (5) assures absence of flux through the bottom foundation (see again figure 1). This 
system of equations is solved with the same procedure as above, thus yielding 
 

 

���	, �, �
 � 14√2Θ����8E���

���

	 cosh E��� � �
4�/� � $��� sinh� E��6��	 
78F����� 	 8 : �1 � ;�
���

��

-���;
<�
��� =E�>	� � 4� � 12�; � �?6�@
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��

����

�

���

	A;. 
 

(6) 

In the latter expression, E� � ), while E� � #)� is the solution of the dispersion relation �� � �$)� tan )�� for the vertical eigenmodes of the system [see 9]. Finally, the F����� are 
the complex solutions of a system of linear equations which stems from (5). 

 
II – 3 The body motion 
 
The motion of the flap is governed by Newton’s law: 
 

 �G � H
D����
 � IJ � J���KD���
 � LD��
 � M��
 (7) 
 
[see 5 for details]. In (7), G is the moment of inertia of the flap, L the buoyancy torque and J���the damping coefficient of the generator (all assumed to be given by the manufacturer). 
Furthermore, in expression (7) H denotes the added inertia torque, J the radiation damping 
and M the exciting torque acting on the plate, which are determined from (5) and (6) as shown 
in Section 2 of [5] (see eq.s 2.34, 2.35 and 2.36, respectively). The average generated power 
over a period � � 2�/� is given by 
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 1 � 1�: J���D��	A�,�

�

 (8) 

from which the capture factor 
 

 L� � 112N$���L�� (9) 

 
is defined as the ratio between the generated power per unit flap width and the incident power 
per unit crest length, L� being the group velocity of the incident waves. 

 
III – Discussion 
 
In this section discussion is undertaken for two different systems. In the first one, a single 

flap is placed in the middle of a straight channel, as depicted in figure 1. In the second one, an 
infinite array of flaps is placed in the open ocean, as represented in figure 2. Under normally 
incident waves, both systems have the same analytical solution derived in Section II [see 5, 
6]. In practical applications, however, the channel and the array configurations are different. 
The first one represents the usual layout of experiments in wave tank aiming at reproducing 
the behaviour of the flap in the ocean [see 1]. Here the position of the lateral walls is fixed 
and the width of the device can be varied. The second layout represents a large farm of 
converters in the open ocean. Here the practical issue is to determine the optimum spacing 
between the devices in order to maximise the capture factor of the system. 
 

III – 1 A single flap in a channel 
 
For a single flap in a channel, the capture factor curve shows a characteristic spiky 

behaviour, as depicted in figure 3. Here the values of L� are reported versus the period of the 
incident waves, being � � 10.9	?, � � 1.5	? and �� � 0.3	?, for several flap widths. Note 
that the capture factor curves all have spikes at the cut-off periods of the channel sloshing 
modes:  

 

 �� � R 2��?$ tanh 42?��� 6 (10) 

 
with ? � 1,2, … As already shown by [5], when the period of the incident waves approaches 
the cut-off period of the ?-th sloshing mode (10), the latter turns from propagating along the 
channel to evanescent, i.e. trapped near the flap. This results in an increase of the 
hydrodynamic action on the flap, ultimately determining the spikes of the capture factor curve 
shown in figure 3. In the latter, the effect of increasing the flap width is also noticeable. As 
long  as  the  flap  width   is  small  compared   to  the  channel   width,  increasing  �  has  the 
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Figure 2 - Plan view of the array configuration. The dashed lines at both sides of the reference 
flap represent imaginary waveguides on which the lateral flux is null, because of symmetry. 
Under normally incident waves such configuration is equivalent to that of a single flap in a 

channel. 

 

 

Figure 3 - Capture factor versus period of the incident wave for the channel configuration of 
Section III – 1. Three different flap widths are considered. 

 
beneficial effect of increasing the maximum capture factor and enlarging the bandwidth of the 
capture factor curve. This is due to the selective behaviour of the transverse sloshing modes of 
the system, for which the most powerful modes resonate with the larger flaps [see again 5]. 
When w → b, however, such effects are largely inhibited and the system behaves in a “quasi-
2D” manner, the capture factor approaching the 2D limit CF = 1/2 [1]. 
 

III – 2 An infinite array of flaps in the open ocean 
 
For an infinite array of flaps, the most important design parameter is the gap a = b – w 

between  two adjacent  converters ( see  again  figure  2),  for given geometry of  the flaps and  
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Table 1 - Power captured and capture factor for an infinite array of converters with different 
gap widths. The geometry of the system is described in Section III - 2. The optimum 

configuration is highlighted. 

 
period of the incident wave. Such gap must be designed in order to optimise the interference 
effects between the flaps and maximise the capture factor. As already shown in [6], the 
optimum capture factor, obtained for 

 

 � � S LG � H (11) 

 
i.e. at body resonance [see 9], can be expressed in terms of the gap width T as  
 

 L���� � 12 |U�|cos V 4T� � 16 (12) 

 
where U� is the complex reflection coefficient of the system, depending on T as well [see 
expression 33 of 6], and V � arg U�. Now, for a given flap width �, Renzi & Dias [6] showed 
that expression (12) reaches the maximum value 
 

 L���� � L���� � 12 4T� � 16 ,							)�T � �
 " 2� (13) 

   
 

  
when all the transverse modes are evanescent, i.e. trapped. Since T/� Y 0, the maximum 
capture factor (13) for the array is larger than the 2D limit of ½. Hence the mutual interaction 
between the flaps, which is responsible for the trapping of energy near the array in the form of 
short-crested waves, can increase the capture factor of the system [5, 6]. Since the limit (13) 
increases linearly with T, the optimum spacing T��� can be defined as the upper boundary of 
the region in which (13) holds, i.e. in practice 
  

 T��� ≃ � � �, (14) 
   

 

  
with � � 2�/), which can be used as a preliminary design formula [see 6]. Note that (13) is a 
theoretical upper limit, since the body resonance condition (11) is usually not achieved by 
large flap-type converters [see 5, 6]. Hence the actual capture factor for the array is usually 
lower than the theoretical upper limit (13) [6]. 

Table 1 shows an example of optimisation for an infinite array of flaps, each of width � � 26	? and placed on a bottom foundation with � � 1.5	?. The water depth is � �10.9	?, the amplitude of the incident wave is �� � 1	? and its period is � � 7	], 
corresponding to a wavelength � � 62	?. For these parameters, several layouts, from 
compact (T/� = 0.30) to sparse (T/� = 0.95), are analysed to determine the optimum array 
spacing T���. From table 1, note that the largest power output and capture factor are attained 
at the optimum configuration T���/� � 0.58, i.e. T��� � 36	? which indeed corresponds to 
(14).  
 

T/� 0.3 0.4 0.5 0.58 0.7 0.95 1	�)_
 504 564 660 795 574 605 L� 0.60 0.68 0.79 0.95 0.69 0.73 
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IV – Conclusions 
 
A single OWSC in a channel and a periodic array of OWSCs have been analysed in this 

work by using the semi-analytical model of Renzi and Dias [5, 6]. While both systems have 
the same analytical solutions for normally incident waves, they have different practical 
application. For the single flap in the channel, the efficiency of the system, evaluated via the 
capture factor, has been shown to increase with the flap width, as long as the latter remains 
small with respect to the channel width. In the array configuration, the width of the flap is set 
and the gap between adjacent flaps is the design variable. Given the wave period and the flap 
width, the capture factor can be maximised by varying the distance between the flaps, so that 
complete trapping of the transverse modes occurs. These results have been obtained under the 
assumptions that the fluid is inviscid and the flow is irrotational. Viscous effects may reduce 
the values predicted here, especially near cut-off frequencies. 
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