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Résumé

Dans la résolution du problème de la tenue à la mer d’un navire animé d’une vitesse
d’avance dans la houle, il est bien connu que la fonction de Green satisfaisant la condition
exacte de la surface libre (singularité de Kelvin) présente des propriétaires d’oscillations
rapides et de convergence lente rendant l’implémentation numérique extrêmement difficile.
La fonction de Rankine est simple et facile à implémenter mais un nombre très important
de facettes nécessaire pour satisfaire la condition sur la surface libre rend la méthode
difficile à utiliser. Dans le présent travail, nous combinons les deux approches afin de
bénéficier la simplicité de la singularité de Rankine dans un domaine près du navire et
la satisfaction de condition sur la surface libre de la singularité de Kelvin à une distance
du navire. Le couplage des deux approches est réalisé grâce à une surface de contrôle de
forme sphéröıdale séparant les deux domaines de fluide.

Summary

The use of the Green function, which satisfies exact free surface boundary, in the
seakeeping problem of a ship advancing with non-zero forward speed has some well-known
problems such as high oscillation and slow convergence of the wave term. The simple
Rankine Green function can be easily implemented, but has some disadvantages such as
high number of panels, which represents the free surface and introduction of the damping
zone. In this work, these two approaches are combined together in order to benefit the
simplicity of the Rankine panel method in the domain near the ship and use the exact
forward speed Green function at some distance from the ship. The coupling of tho methods
is done with the help of a control surface of the spheroidal form which separates the fluid
region onto two domains.
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I – Introduction

As it is known, the implementation of the Kelvin source method using the Green func-
tion for a moving and oscillating source arises to several well-known problems concerning
its wave component. In particular, it behaves with singularities and high oscillations when
both the field and source points tend to the free surface [1]. Also, it is the slow convergent
integral defined along the dispersion curves. In every cases, for each body shape this wave
component should be evaluated very carefully.

In the earlier work [2], numerical results had very good agreement with simple body
shapes : a sphere (compared with [3]), a hemisphere [4], an ellipsoid [5] and a Wigley
model III [6]. Unfortunately, for the real shape of a container ship, computation was done
for the CRS benchmark, the results present large discrepancy from those of model tests.

In this work, we modify the Green function method (Green function satisfies the free
surface boundary condition) by combining it with the Rankine panel method.

The Rankine panel method is one of the well-known methods used for sea-keeping
problems. It uses the simple Green function −1/(4πr) − 1/(4πr∗) for unbounded fluid,
where r is the distance between the field point and the source point ; r∗ is that between the
field point and the mirror of the source point with respect to undisturbed free surface. On
the other hand, to satisfy the free surface and body boundary conditions, the integrations
must be performed over all surfaces. Thus, a large amount of panels are necessary due to
panellizing the free surface. In addition, to avoid the reflected wave from the sides of a
numerical fluid domain (which is finite) a damping zone has to be introduced.

In this work, we suggest to divide the fluid domain into two subdomains by a control
surface of specific shape, semi-spheroid. This surface separates the problem into two pro-
blems : 1) the internal one in which the ship is of any form, the Green function is Rankine
source Green function, the domain is finite and all normal derivatives of velocity potential
Φ are known on the ship hull and on the control surface as the solution of the external
problem ; 2) the external one in which the shape of the control surface is known, semi-
spheroid, and velocity potential is assumed to be known. Across the control surface two
additional conditions must be satisfied : both the velocity potential and its normal deri-
vative are to be continuous. The second problem provides us the Dirichlet-Neumann map
which is used to solve the first problem, and as result the original one, by Rankine panel
method.

The combination of these two methods keeps their advantages and brings important
benefits : area to be discretized becomes smaller, no need to introduce the damping zone,
the solution of the problem is that for unbound fluid domain. The calculation of the Green
function for ship motion may be done only once for large set of the different ships for the
one particular velocity U , incoming wave heading β and frequency ω0, and an additional
parameter which describes the spheroid.

II – Formulation

The reference system moving with the ship at the mean forward speed U along the
positive x−axis is defined by letting (x, y) plane coincide with the mean free surface and
z−axis be positive upward, see Figure 1. It is assumed that the fluid is invicid and flow
irrotational, the wave steepness is small and the depth is infinite.

The fluid domain is divided into two sub-domains (exterior and interior) by a control
surface C which is of known predefined shape, a hemispheroid. The shape of this surface
is chosen in such a way in order to use spherical harmonics S1

nm(β, ϕ) = Pm
n (cos β) sin mϕ
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Figure 1 – Formulation of the problem (left) and spheroidal coordinate system on the
spheroid (right)

and S2
nm(β, ϕ) = Pm

n (cos β) cos mϕ to present the velocity potential on C and reduce the
side distance from the ship to the control surface. Here Pm

n (t) are the associated Legendre
functions. This will allow us to reduce number of free surface panels for the Rankine Panel
method, which is used in the interior domain.

From the theory of harmonic functions it is known that any harmonic function f(x, y, z)
can be represented in the form of the infinite series with respect to spherical harmonics
[7], [8]

f(x, y, z) =
∞∑

n=0

f c
n0

2
S2

n0(β, ϕ) +
∞∑

n=1

n∑
m=1

(
f s

nmS1
nm(β, ϕ) + f c

nmS2
nm(β, ϕ),

)
(1)

where Cartesian coordinates (x, y, z) and spheroidal coordinates (β, ϕ) link to each other
as the following

x = c cos β, y = cR sin β cos ϕ, z = cR sin β sin ϕ, (2)

whereR is the ratio of two radiiR = Ry/Rx and c is a scale factor. The angle −π < ϕ 6 0,
varies in the plane yOz and 0 6 β < π and in the plane inclined to the horizontal plane
with angle ϕ to y-axis, see Fig. 1 right. Note, that equation (1) is valid in either prolate
(instead of c we should write c cosh α and cR – c sinh α) or oblate (c – c sinh α, cR –
c cosh α) coordinate systems. If we define the coordinate system (2) in such a way that
the classical definition of the spherical coordinate system is a particular case when we
ought to write

x′ = cR sin β cos ϕ, y′ = cR sin β sin ϕ, z′ = c cos β.

But in this coordinate system the axis of the rotation of the ellipse is z, i.e. Rx = Ry, while
in our case this axis is x-axis, so Ry = Rz and the connection between two spheroidal
coordinate systems is x = z′, y = x′, z = y′.
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On the control surface we have

φ(e) = φ(i) =
∞∑

n=0

φc
n0

2
S2

n0(β, ϕ) +
∞∑

n=1

n∑
m=1

(
φs

nmS1
nm(β, ϕ) + φc

nmS2
nm(β, ϕ)

)
;

φ(e)
n = φ(i)

n =
∞∑

n=0

ψc
n0

2
S2

n0(β, ϕ) +
∞∑

n=1

n∑
m=1

(
ψs

nmS1
nm(β, ϕ) + ψc

nmS2
nm(β, ϕ)

)
,

(3)

where normal vector n is directed inward the exterior domain.
The velocity potential satisfies the Laplace equation in the whole fluid domain :

∆φ(i) = 0, ∆φ(e) = 0, (4)

where ’i’ stands for the inner region and ’e’ for exterior one. In addition it satisfies the
free-surface (φ(i) and φ(e)) and body (φ(i)) boundary conditions. In order to couple the
solutions φ(i) and φ(e) in each sub-domain, the conditions of continuity of the velocity
potential, φ(i) = φ(e), and its normal derivative, φ

(i)
n = φ

(e)
n , must be added.

The application of the Green’s second identity in the both regions give the following
boundary integral equations

∫

C

(
φ(e)

n G− φ(e)Gn

)
ds = φ(e)(P ),

∫

C+F+B

(
φ(i)

n GR − φ(i)GR
n

)
ds = φ(i)(P ), (5)

where F means the free surface, B body surface and GR = −1/(4πr) − 1/(4πr∗) is the
Rankine Green function. Note, that here the integrals are not the principal value integrals
and the fluid point is inside the region or on one of its boundary. Otherwise, we have to
write the coefficient 1/2 in front of the φ on the right-hand sides of eqs. (5) if the point
P belongs to the region’s boundary.

Multiplication of the first integral equation in (5) by 1/πSr
nm(β, ϕ) and the following

integration of the product yield the linear operator DN which maps the velocity potential
by its normal derivatives

~ψ = −DN~φ, ψ = (ψs
nm, ψc

nm)T , φ = (φs
nm, φc

nm)T . (6)

The negative sign appears due to the opposite directions of the normal vectors to the
control surface for the interior and exterior domains.

After panellization of the free surface, F =
∑

α

Fα, and body hull, B =
∑

β

Bβ, the

second integral equation in (5) becomes

(∑
α

∫

Fα

+
∑

β

∫

Fβ

)
(
φ(i)

n GR − φ(i)GR
n

)
ds +

∫

C

(
φ(i)

n GR − φ(i)GR
n

)
ds = φ(i)(P ), (7)

And on the both Fα and Bβ we assume the velocity potential and its normal derivative
are constant. Thus the above equation (7) can be rewritten as the following

∑
α

ψα

∫

Fα

GRds +
∑

β

ψβ

∫

Fβ

GRds−
∑

α

φα

∫

Fα

GR
n ds−

∑

β

φβ

∫

Fβ

GR
n ds

+

∫

C

(
φ(i)

n GR − φ(i)GR
n

)
ds = φ(i)(P ).

(8)
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Substituting (3) and (6) into (8) gives

∑
α

ψα

∫

Fα

GRds +
∑

β

ψβ

∫

Fβ

GRds−
∑

α

φα

∫

Fα

GR
n ds−

∑

β

φβ

∫

Fβ

GR
n ds

+H(P )~φ + G(P )DN~φ = φ(i)(P ),

(9)

where the elements of matrices H and G are the integrals over C of GnSr
nm and GSr

nm,
respectively.

Depending on the position of the field point P , three cases should be considered : 1)
P is on the free surface ; 2) P is on the body hull ; and 3) P is on the control surface C.

In the first two cases, if the point P = Pγ locates either on the free surface or body,
(9) will be

∑
α

ψα

∫

Fα

GRds +
∑

β

ψβ

∫

Fβ

GRds−
∑

α

φα

∫

Fα

GR
n ds−

∑

β

φβ

∫

Fβ

GR
n ds

+H(Pγ)~φ + G(Pγ)DN~φ = φγ;

(10)

and if on the control surface, case 3), then we should substitute the velocity potential
written on the right-hand side in the form of infinite series (3). The following multiplication
by spherical harmonic and the integration of the obtained product provides, after some
algebra, 



φα

φβ

φs
nm

φc
nm


 = M (ψβ) , (11)

where the vector on the left-hand side (φα, φβ, φs
nm, φc

nm)T is unknown, while the vector
on the right-hand side (ψβ) is known from the body boundary conditions.

In (10) the unknown ψα are expressed through φα by applying the free surface boun-
dary condition in order to reach (11).

III – Results

To archive the aim, the work is divided into 3 steps : 1) external problem for the Green
function for zero speed in infinitely deep water case ; 2) the Rankine panel method for
the internal domain. These two stages together solves the problem for zero speed floating
body, which allows us to verify and justify the presented method. 3) external problem for
the Green function for an advancing ship, which complete the problem.

At the initial stage, the floating body and the control surface are chosen to be hemis-
pheres of R = 2 and R = 4 (Rx = Ry = 4), respectively. The choice is done in such a
manner, because for the sphere for some parameters (or conditions) there are analytical
solutions, which are helpful to validate intermediate results.

For example, if the control surface is the solid body, the normal derivatives of the
velocity potential on it are known φ

(e)
n = nx. Thus we may validate the matrix DN :

~φ(e) = DN−1~φn. Knowing this vector ~φ(e) we can calculate the velocity potential at any
point on the sphere, which is (1/2)Rφ

(e)
n , [9], in a case when the frequency is zero, ω = 0.

On the other hand, the velocity potential can be computed with the help of the other
classical solvers, in our case we used in-house built software Hydrostar.

The comparisons of the results obtained by all these three methods show good agree-
ment (current method for ω = 0 + analytical solution + Hydrostar, current method for
ω 6= 0 + Hydrostar).
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The next step was the verification of the internal domain solver. The Rankine Green
function is corresponding to the problem of a sphere in the unbound fluid with a current (if
the body is a hemisphere). Again we had the very good agreement between two different
methods.

After confirming that matrices for the both internal and external domains, we perfor-
med the coupling.

In Figure 2, the added masses for the surge or sway (left) and heave (right) are shown.
The dash line corresponds to the results obtained by in-house built software, while those
obtained by the current hybrid method are shown by the solid line.

In Figure 3, there are the damping coefficients for the surge or sway (left) and heave
(right). The notations are as same as for the added masses (Fig. 2).
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Figure 2 – Added masses for Surge or Sway (left) and Heave motions of the hemisphere
of Radius 2
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Figure 3 – Damping coefficients for Surge or Sway (left) and Heave motions of the hemis-
phere of Radius 2
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Thus, we can conclude that the present method, at least for the zero-speed Green
function, provides rather good results.

IV – Conclusions

In this work we proposed the hybrid method to solve the seakeeping problem for
a advancing ship with forward speed in waves. The fluid domain is divided into two
sub-domains by introducing a control surface of known shape like hemispheroid. In the
inner domain the solution is sought by the Rankine panel method. In order to satisfy
the radiation conditions, the solution of the external domain is coupled with Rankine
panel method by using the continuity property of the velocity potential and its normal
derivative.

The such chosen shape of the control surface provides the following benefits : a) the
area to be panellized around the ship is reduced ; b) no need to present the damping zone,
because the radiation conditions are satisfied by solving external problem, where the exact
forward Green function is used ; c) the solution in the external region is depends only on
the ratio of two radii of the spheroid, R and the frequency ω. Once the exterior problem
is solved very accurately, for some set of parameters, the method could be applied to solve
seakeeping problems for a wide range of the ships of different geometries more faster than
general Rankine panel method and more accurate than the Kelvin source method. d)
The integral of the wave component of the exact forward speed Green function when the
both source and field points close to each other and to the free surface can be evaluated
efficiently.

The validation of this method was demonstrated for the zero-speed Green function for
which both the analytical or numerical solutions exist.

V – Future work

In the future, we are going to verify our method by comparing the results calculated
by two different methods for other geometries like those given in [3], [4], [5] and [6].
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