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Résumé

Ce papier — écrit à l’occasion du départ à la retraite du second auteur — résume les
principaux résultats des travaux communs récents des auteurs concernant le développement
de relations analytiques simples et d’outils pratiques de calcul pour évaluer l’écoulement
autour d’une carène animée d’une vitesse constante en eau calme. Le papier traite de deux
sujets principaux : (a) l’établissement d’expressions analytiques permettant de prédire la
vague d’étrave qui est un aspect important de l’écoulement autour d’une carène et (b) une
méthode très simplifiée de calcul de l’écoulement en utilisant une fonction de Green, aussi
appelée méthode des singularités ou des éléments frontières. Les résultats de ces deux
études peuvent être utilisés pour définir rapidement et optimiser la forme des carènes au
niveau de l’avant-projet, y compris l’étude de concept et le dessin préliminaire.

Summary 1

This paper — written to mark the retirement of the second author from the École
Centrale of Nantes — summarizes the main results of the authors’ recent joint work
related to the development of simple analytical relations and practical computational
tools for evaluating the flow about a ship hull steadily advancing in calm water. This
paper summarizes our work on two main topics : (a) analytical relations for predicting
ship bow waves, an important particular aspect of the flow about a ship hull, and (b)
a highly-simplified flow-calculation method based on the Green function method, also
widely known as the boundary element or panel method. The analytical relations for ship
bow waves and the flow-calculation method are well suited for routine applications at early
ship design stages, including concept and preliminary design, and hull-form optimization.

1. The support of the Office of Naval Research (Technical Monitor : Ms. Kelly Cooper) and the ILIR
Program at NSWCCD (Technical Monitor : Dr. John Barkyoumb) is gratefully acknowledged.
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INTRODUCTION

The first two authors’ close cooperation on joint research work began as a result of the first
author’s two-month visits at the École Centrale of Nantes in 2004 and at the University of Poitiers
in 2005. Specifically, our cooperation dates from the spring of 2005 when Prof. Michel Guilbaud
of the University of Poitiers and the authors began working together on the development of
a simple approximate theory of overturning ship bow waves. The results of the authors’ joint
research work are reported in references [1-8] and in a number of papers presented at various
conferences. As indicated in [1-8], the authors have also benefited from their cooperation with
several researchers on both sides of the Atlantic ocean ; specifically Prof. Michel Guilbaud and
Prof. Laurent David of the University of Poitiers, Dr. Patrick Queutey of the École Centrale
of Nantes, and Dr. Hyun Yul Kim and Mr. Fuxin Huang of the George Mason University. Our
joint research work on two topics related to the 3D flow about the hull of a ship that advances,
at constant speed along a straight path, in calm water of effectively infinite depth and lateral
extent is summarized here. Applications to ship hull-form optimization are not considered here.

The first research topic seeks to obtain simple analytical relations — readily suited for
applications to ship design, notably concept and preliminary design — for predicting the bow
wave generated by a steadily advancing ship hull. This work has been pursued for two main
reasons : a practical motivation and a simple theoretical consideration. The practical motivation
is that a ship bow wave is arguably the most visible, complex and important feature of the flow
due to a steadily advancing ship, and is of interest for design. The theoretical consideration is that
the flow due to a ship hull (steadily advancing in calm water) consists of a wave component that
propagates downstream (and is then located behind the ship stem), and a local-flow component
that is significantly smaller than the wave component (except at very low Froude numbers). As a
result, a ship bow wave is not appreciably affected by the length of the ship or by the shape of the
ship stern and midbody, and in fact is mostly determined by the size and shape of the ship bow.
The bow wave generated by a ship hull can therefore be determined, a priori, for several classes
of ship bows, which can be defined in terms of a limited number of parameters. Specifically, a
four-parameter family of fine nonbulbous bows and a more general seven-parameter family of
bulbous bows are sufficient to approximately represent most ship bows.

The second topic of our research is the development of a simple practical computational
method, based on the classical Green function method (also known as the Boundary Element
Method and the panel method), for evaluating 3D potential flow about a steadily advancing ship
hull. This work is motivated by the practical need for a computational method that is suited for
routine applications to hydrodynamic design and hull-form optimization. Another motivation
is the authors’ quest to finally find a fully satisfactory way, and hence to not die complete
idiots, for applying the Green function method to compute 3D flow about a ship ; a notoriously
‘hard’ problem that has been a longstanding source of frustration to many hydrodynamicists,
the authors included.

Our work on ship bow waves has led to three main results : simple analytical relations

that determine (a) the bow wave profile and (b) the boundary between two basic flow regimes

(unsteady and ‘steady’ overturning bow waves) for a broad class of fine ship bows, and (c) a

simple theory that approximately predicts the size, the shape, and the thickness of an overturning

ship bow wave and the main geometrical characteristics of the related wavebreaking wake. The

work on the development of a practical Green function method has led to two main results :

(a) remarkably simple Green functions — for the general case of flow about an arbirary ship

hull, and for two special cases that correspond to ACV (Air Cushion Vehicles) and planing hulls

(associated with the flow due to a free-surface pressure patch) and thin ships (thin-ship theory)

— and (b) a highly-simplified flow representation, and related calculation method, that only

involves continuous ordinary functions (algebraic, exponential and trigonometric functions) of

real arguments. These main results are now summarized.
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Figure 1 – Left side : Two-parameter family of wedge-shaped ship bows defined by the draft D and the
waterline entrance angle 2α . Center : Four-parameter (draft D, rake angle β, and entrance angles 2α
and 2α′ of top and draft waterlines) family of ship bows with rake and flare. Right side : Ship draft D
and speed Vs , rise of water Z0 at the ship stem, bow wave height Zb , distance Xb between the ship stem
and the bow wave crest, and distance X0 between the ship stem and the crossing of the bow wave with
the mean free-surface plane Z = 0 .

I – ANALYTICAL SHIP BOW WAVES

I – 1 Analytical bow wave profiles for fine nonbulbous ship bows

Two simple classes of nonbulbous ship bows — the two-parameter family of wedge-shaped
bows and the more general four-parameter family of bows with rake and flare depicted on the
left side and in the center of Fig.1 — have been considered. The family of wedge-shaped bows is
a special case, that corresponds to β = 0 and α′ = α , of the family of bows with rake and flare.
Both positive (0<β) and negative (β<0) rake angles have been considered.

As illustrated on the right side of Fig.1, a ship bow wave profile is largely determined
in terms of four main ‘primary’ variables : the wave height Zb , the distance Xb between the
ship stem and the wave crest, the rise of water Z0 at the ship stem, and the ‘length’ X0 of
the wave (location, measured from the ship stem, of the intersection of the bow wave profile
with the mean free-surface plane Z = 0). These four primary variables have been considered
for the simplest (two-parameter) class of wedge-shaped bows and, subsequently, for the more
general (four-parameter) family of bows with rake and flare. Specifically, wedge-shaped bows
are considered in [9] where simple analytical relations for Zb and Xb are given, in [1] where a
simple analytical expression for Z0 is given, and in [2] where the relations for Zb , Xb and Z0 are
summarized and considered further. These relations for wedge-shaped bows are extended to the
more general family of ship bows with rake and flare in [4] and finally in [6] , where X0 and the
wave profile are also considered.

Thus, the four primary variables Zb , Xb , Z0 , X0 can be estimated using simple analytical
relations. E.g., for a wedge-shaped bow with draft D and waterline entrance angle 2α , the wave
height Zb is given by

Zb g

V 2
s

≈ 2.2

1+F

tanα

cosα
with F ≡ Vs√

gD
. (1)

Here, g and Vs stand for the acceleration of gravity and the ship speed, respectively. The relation
(1) for the wave height Zb and the corresponding relation for the locationXb of the wave crest are
obtained in [9] for wedge-shaped bows using both elementary theoretical considerations (notably
dimensional analysis and basic asymptotic considerations) and experimental measurements. The
expression for Z0 given in [1] is based on thin-ship theory. This theory is also used in [4] and
[6] to extend the relations for Zb , Xb , Z0 given in [9,1,2] for wedge-shaped bows to a (four-
parameter) family of bows with rake and flare, and to consider X0 and bow wave profiles for
this more general family of bows.

Theoretical predictions given by the relation (1) for Zb and the corresponding relations forXb

and Z0 are compared with experimental measurements in [9,1,2] and with numerical predictions

given by thin-ship theory and CFD in [4,6] . E.g., Fig.2 shows a comparison of the wave height
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Figure 2 – Normalized bow wave height (Zb g/V
2
s ) cosα/ tanα for ten hull forms (left), and a rectangular

flat plate towed at several speeds Vs , yaw (incidence) angles α and heel angles γ (right). The straight
solid line is the approximation (1) and the dashed curve corresponds to Ogilvie’s high-Froude-number
approximation.

Zb predicted by the simple relation (1) and experimental measurements for ten wedge-shaped

bows and a rectangular flat plate towed at various speeds Vs and yaw angles α .
The relations for Zb , Xb , Z0 , X0 given in [6] provide insight into the influence of basic

design parameters like the Froude number F (ship speed Vs and draft D) and parameters
associated with the bow shape (rake angle β , waterline entrance angles α and α′, and related
flare parameter) for a broad class of ship bows. E.g., the relations yield

Z0/D = O(1) Zb/D = O(F ) Xb/D = O(F ) X0/D = O(F 2) as F→ ∞ .

Thus, the height Zb of a ship bow wave and the distance Xb between the ship stem and the bow
wave crest increase in proportion to the ship speed Vs as Vs →∞ ; however, the rise of water
Z0 at a ship stem tends to a constant value as Vs →∞ , and the length X0 of the bow wave
increases as V 2

s in the high-speed limit.
The bow wave profile is determined from the four primary variables Zb , Xb , Z0 , X0 . Spe-

cifically, the front and back of the bow wave profile are approximated by two parabolic arcs,
as in Fig.3 . This figure also depicts wave profiles given by thin-ship theory and two Euler-flow
CFD computations, for the ship bow shown in Fig.1 with β = 30◦ and α′ = α = 15◦, at four
draft-based Froude numbers F = 0.67 , 1 , 1.5 , 2.33 . The Euler wave profiles in Fig.3 were ob-
tained using the flow solvers ISIS-CFD and FEFLO developed at ECN-CNRS and at GMU,
respectively [10-12] . A ship hull with fore and aft symmetry, and length/draft ratio equal to 40,
was used for the Euler-flow calculations. Fig.3 shows that the analytical bow wave profiles are
comparable to the Euler (CFD) wave profiles, and that the Euler profiles are appreciably closer
to the analytical bow wave profiles than to the wave profiles given by thin-ship theory.

Thus, the simple analytical relations for the four primary variables Zb , Xb , Z0 , X0 and

the related parabolic wave profile readily provide estimates of ship bow waves for a broad

class of nonbulbous ship bows. These estimates, comparable to CFD predictions, can be used

immediately — without hydrodynamic calculations, and at a computational cost that is null —

for design, notably at early design stages when the precise hull geometry may not yet be known,

and within a multi-objective optimization scheme. The relations and the systematic parametric

studies reported in [4,6] also provide useful insight.

I – 2 Boundary between unsteady and overturning bow wave regimes

The bow wave generated by a ship (that advances at constant speed along a straight path
in calm water) can be unsteady, or can consist of an overturning detached thin sheet of water
that is mostly steady until it hits the undisturbed free surface. An example of these two basic
flow regimes — the ‘unsteady bow wave regime’ and the ‘overturning bow wave regime’ — is
shown in Fig.4 . The boundary between these flow regimes is determined in [2] from the relation
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Figure 3 – Analytical (parabolic) wave profiles and wave profiles obtained from thin-ship theory and
two CFD flow solvers (ISIS-CFD and FEFLO), used in Euler-flow mode, for the ship bow shown in Fig.1
with β = 30◦ and α′= α = 15◦, at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 .

(1) for the bow wave height and the upper bound Zb g/V
2
s ≤ 1/2 for steady free-surface flows,

which readily yields
4.4 tanα/cosα ≤ 1+F . (2)

This relation for wedge-shaped bows is readily extended to the more general class of ship bows
with rake and flare [3,6] .

The upper bound Zb g/V
2
s ≤ 1/2 for steady free-surface flows also shows that the height of

an unsteady ship bow wave is given by Zb ≈ V 2
s /(2 g) . Thus, the height of an unsteady ship

bow wave only depends on the ship speed Vs , and is independent of the ship draft D or the bow
shape. Experimental validation of this simple theoretical result is reported in [2] .

The relation (2) shows that a ship with a sufficiently fine waterline, specifically with entrance

angle 2α smaller than approximately 25◦, may generate a steady overturning bow wave at

any speed. However, a ship with a fuller waterline (25◦ < 2α) can only generate a steady

bow wave if the ship speed is higher than a critical speed that is defined in terms of the bow

shape by the simple analytical relation (2). Experimental validation of the theoretical boundary

(2) separating the unsteady and overturning bow wave regimes is given in [3,2] . Specifically,

qualitative observations (photographs and videos) and quantitative measurements of fluctuations

of the bow wave profile have been performed and are reported in [3,2] for the bow wave generated

by a rectangular flate plate towed at various speeds Vs , yaw (incidence) angles α and heel angles

γ . These flow observations and measurements show that the remarkably simple relation (2)

appears to correctly predict if a ship bow wave can be expected to be unsteady or overturning.

I – 3 A simple approximate theory of overturning ship bow waves

As already noted, the bow wave generated by a ship can be unsteady or can consist of an

overturning detached thin sheet of water that is mostly steady until it hits the undisturbed free

surface. The ‘steady’ overturning ship bow wave regime, which mostly occurs for ships with fine

bows, is considered in [7] .
Experimental investigations of ship bow waves, notably overturning bow waves, have been

reported in the literature ; a partial list of references to these experimental studies may be found
in [7] . Overturning ship bow waves cannot be predicted using traditional theoretical methods,
notably thin-ship theory and potential-flow panel methods, for computing flow about a ship
hull. However, divergent overturning ship bow waves can be predicted and evaluated using the
2d+t theory and some numerical (CFD) methods. A partial list of references to these numerical
studies is also given in [7] .

Recent ‘advanced’ CFD methods can be used to compute overturning detached ship bow
waves, as is well advertised in this conference. However, such numerical calculations require a
fine discretization to resolve the detached wave, and are ill suited for routine applications to
design, notably at early stages when a large number of alternative designs often need to be
considered. These numerical methods likewise are ill suited for systematic parametric studies
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Figure 4 – Examples of steady overturning (left side) and unsteady (right side) bow wave due to
a vertical rectangular flat plate. The flat plate, immersed at a draft D = 0.2 m, is towed at a yaw
(incidence) angle α = 15◦ (left) or 45◦ (right) and a speed Vs = 2.25 (left) or 2 (right) m s−1. The
corresponding draft-based Froude numbers are F ≈ 1.61 (left) and 1.43 (right).

to determine the influence of a ship’s speed and draft, and of the shape of a ship bow, on the
overturning bow wave and the related wavebreaking wake.

Indeed, neither advanced numerical methods nor experimental investigations are well suited

for performing systematic parametric studies designed to yield ‘cause-and-effect’ relations that

readily provide insight into the influence of a ship’s speed and draft, and of main parameters that

approximately define the bow shape — entrance angles at the top and bottom waterlines, rake

angle, and flare — on the overturning bow wave, and the related wavebreaking wake, generated

by a ship. Indeed, none of the previously listed experimental or numerical investigations present

parametric studies from which ‘cause-and-effect’ relations can be obtained. The main practi-

cal objective of the simple approximate analytical theory expounded in [7] is to provide such

‘cause-and-effect’ relations, albeit approximate ones, that can be applied immediately — without

hydrodynamic calculations, and at a computational cost that is essentially null — notably at

early design stages when the bow shape is not yet fully determined.
The simple theory reported in [7] ignores effects of viscosity and surface tension. Although

this basic approximation greatly simplifies the flow analysis, the inviscid-flow analysis of an
overturning ship bow wave remains extremely complex, notably due to strong nonlinearities in
the free-surface boundary condition. Additional approximations are then required, and are made
in the simple theory expounded in [7] . However, this theory accounts for nonlinearities in the
free-surface boundary condition.

The theory consists of four main steps. The initial step is the contact curve — commonly
called bow wave profile — between the ship hull and the free surface. This step is considered in
[6,4] for the broad class of fine ship bows depicted in the center of Fig1. In the second step, pre-
viously considered in [13] , the flow velocity at the bow wave profile is determined — analytically
in terms of the bow wave profile — from the exact (for an inviscid flow) boundary conditions at
the ship hull surface and the free surface. The third step is an elementary Lagrangian analysis,
based on Newton’s equations, to determine the motion of water particles within the overturning
detached bow wave and the wave’s size, shape, and intersection with the mean free surface.
The fourth step determines the thickness of the overturning detached ship bow wave by relating
the volume of water that flows through an overturning bow wave to the water displaced by
the advancing ship hull. These four steps fully determine the size, shape and thickness of an
overturning detached bow wave and the related wavebreaking wake in terms of the ship speed,
the bow geometry (draft and shape) and the bow wave profile. The theory is then particularly
simple, and markedly different from alternative approaches.

A main recommendation of the theory is that it yields simple, albeit approximate, relations
that provide insight into the influence of a ship’s speed and draft, and of major parameters
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Figure 5 – Experimental observation (photograph on upper left corner), numerical solutions of Euler
(lower left) or RANS (lower right) equations given by the CFD flow solver ISIS-CFD, and theoretical
prediction (upper right) of bow wave generated by a rectangular flat plate, of draft D = 0.2 m and length
0.782 m , towed at a speed Vs = 2.5 m/s , a yaw angle α = 20◦, and a heel angle γ = 15◦.

related to the bow shape (entrance angles at the top and bottom waterlines, rake angle, and
flare) on the overturning bow wave, and the related bow wavebreaking wake. These analytical
relations can be applied immediately — at a computational cost that is null for all practical
purposes — for design, notably at early stages when the bow shape may not yet be known
precisely. The relations can also be used to extend the capabilities of calculation methods like
thin-ship theory or panel methods.

Fig.5 shows a comparison of theoretical predictions with experimental observations and

numerical calculations. Specifically, numerical solutions — obtained using the CFD flow solver

ISIS-CFD [10] — based on Euler or RANS equations are shown in the lower left or right corners,

respectively, of Fig.5 for a rectangular flat plate towed at a speed Vs = 2.5 m/s, a yaw angle α =

20◦ and a heel angle γ = 15◦. The ‘theoretical bow wave’ predicted by the simple approximate

theory and the ‘experimental bow wave’ are shown in the upper right or left corners, respectively.

The bow wave height predicted by the RANS numerical computations is appreciably smaller

than the experimental wave height and the wave heights predicted by the Euler solution and

the analytical theory, which all agree fairly well. The ‘Euler wave crest’ appears to be located

further away from the leading edge of the plate (stem) than the experimental and theoretical

wave crests, which are in fairly good agreement. In fact, the theoretical wave profile appears

to better agree with the experimental profile than the Euler and RANS profiles. However, the

overturning bow wave predicted by the theory is significantly shorter than the experimental

bow wave and the ‘numerical bow waves’ (both Euler and RANS), which all appear to be in

good agreement. The thickness of the overturning bow wave predicted by the theory for the case

considered in Fig.5 is approximately 0.5cm, which is consistent with experimental observations

(the circular dots on the plate shown in the upper left corner of Fig.5 are 0.5cm in diameter and

spaced 2cm apart in the horizontal and vertical directions). Thus, the theory appears to yield
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realistic predictions of the size, shape and thickness of overturning ship bow waves.

II – PRACTICAL GREEN FUNCTION METHOD

Alternative methods for evaluating steady free-surface flows about ships in deep water have
been considered in the literature. These methods include semi-analytical theories based on va-
rious approximations (thin-ship, slender-ship, 2d+t theories), potential-flow panel (boundary
integral equation) methods that rely on the use of a Green function (elementary Rankine source,
or Havelock source that satisfies the radiation condition and the Kelvin-Michell linearized free-
surface boundary condition), and computational fluid dynamics (CFD) methods that solve the
Euler or RANS equations. These alternative calculation methods are reported in a huge body
of literature, not reviewed here ; a partial list of references may be found in e.g. [2] .

Selection of a flow calculation method requires consideration of a tradeoff between competing
requirements with respect to accuracy and practicality. Indeed, practical tools that are simple
to use and highly efficient, but need not be highly accurate, are required to quickly evaluate
the very large number of alternative designs that typically need to be considered for concept
and preliminary design and for hydrodynamic optimization. However, detail design and design
evaluation involve many fewer choices and require more accurate computational tools, for which
efficiency and ease of use are less important. Thus, highly-efficient (in terms of user input time
and CPU) and robust approximate methods are important for many practical applications,
notably for early design stages (concept and preliminary design) and for hull-form optimization ;
e.g., [21-25] .

A classical approximate method is the potential-flow panel method based on a Green function

that satisfies the radiation condition and the Kelvin-Michell linearized boundary condition at the

free surface. Two well-known major recommendations of this approach are (a) that the farfield

boundary condition (including the radiation condition) is satisfied — automatically and exactly

— via the Green function, and (b) that the flow in the infinite 3D flow domain outside a ship

is formulated over the finite 2D ship hull surface.

II – 1 Highly-simplified Green functions

However, this remarkable simplification comes at the price of a relatively complicated Green
function. This Green function can be expressed as the sum of three components : (a) a wave
component defined by a single Fourier integral with continuous integrand, (b) the fundamental
free-space Green function 1/r where r is the distance between the source point x ≡ (x , y , z)
and the flow-field point x̃ ≡ (x̃ , ỹ , z̃) in the Green function G ≡ G( x̃ ,x) , and (c) a local
flow component that is given by a double Fourier integral with singular integrand. The singular
double Fourier integral can be transformed into a single integral, with integrand expressed in
terms of the exponential integral function E1(ζ) with a complex argument ζ .

Three alternative single-integral representations of the local flow component and the corres-
ponding Green function are given in [14] , including the well-known representation

4πG = H(x− x̃)
4

F 2
ℑm

∫ t∞

−t∞
dtΛ e (1+ t2 ) ( z̃+z )/F 2+ i

√
1+ t2 [ x̃−x+ t ( ỹ−y ) ]/F 2− 1

r
+GL. (3)

The coordinates of the source point x and of the flow-field point x̃ in the Green function G( x̃ ,x)
are nondimensional in terms of a reference length L ref , e.g. the ship length Ls or V 2

s /g where
Vs stands for the ship speed and g is the acceleration of gravity. Thus, we have x ≡ (x , y , z) ≡
(X,Y , Z )/L ref and x̃ ≡ (x̃ , ỹ , z̃) ≡ (X̃ , Ỹ , Z̃ )/L ref . The first term in the classical integral
representation (3) of G is the wave component, where H(·) stands for the usual Heaviside unit-
step function, ℑm means that the imaginary part is considered, F ≡ Vs/

√
gL ref is the Froude
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Figure 6 – Function L in expression (4) for the local flow component GL in the Green function G for
the three particular cases a = 0 (left), b = 0 (center) or c = 0 (right), i.e. for x̃ − x = 0 , ỹ − y = 0
or z̃ + z = 0 . The function L is evaluated using the (exact) integral representation (4) or the simple
approximation (6).

number, and the function Λ filters irrelevant unrealistic short waves for t∞ < |t | . The local flow
component GL in (3) is given by

GL=
1

r1
− 2L

F 2
with L ≡ 1+

c

d+ a
− 1

π

∫ 1

−1
dtℑm[ eζE1(ζ) + ln(ζ)] . (4)

Here, ζ ≡ (b t− c
√
1− t2 + i a)

√
1− t2 with a ≡ | x̃−x |/F 2 , b ≡ | ỹ− y |/F 2 , c ≡ −(z̃+ z )/F 2

and d ≡
√
a2 + b2 + c2 ≡ r1/F

2. The coordinates a , b , c and the related distance d are ≥ 0 and
nondimensional with respect to the reference length L ref = V 2

s /g . In (3) and (4), r and r1 are
defined as

r ≡
√
(x̃− x)2+ (ỹ− y )2+ (z̃− z )2 , r1 ≡

√
(x̃− x)2+ (ỹ− y )2+ (z̃+ z )2 . (5)

Clearly, r and r1 represent the (nondimensional) distances between the flow-field point x̃ ≡
(x̃ , ỹ , z̃ ) and the source point x ≡ (x , y , z) or its mirror image x1 ≡ (x , y ,−z) with respect to

the mean free-surface plane z = 0 .
Nearfield and farfield asymptotic approximations to the local flow component GL are given

in [15-18] . Approximations based on polynomial expansions [18] or table interpolation [19,20] in
complementary contiguous regions of the flow domain have also been given. Considerably simpler
alternative approximations — that are fully-analytical and valid within the entire flow region —
to the local flow component in the Green function G( x̃ ,x) have been obtained by the authors
for two special cases that correspond to flows due to thin ships [4] and air-cushion-vehicles or
planing boats [5] , for which we have ỹ − y = 0 or z̃ + z = 0 , and for the general case when the
source point x and the flow-field point x̃ in the Green function G( x̃ ,x) are arbitrary [8] .

Specifically, the local flow component GL in the representation (3) of the Green function G
is given by the analytical approximation

GL ≈ 1

r1
− 2

F 2+ r1
− 2F 2ψ

(F 2+ r1)2
− 0.4F 2 r1

(F 2+ r1) 5
[ (A+Bγ)(1− ξ)−F 2C ξ ] . (6)

Here, r1 is given by (5), and A , B , C and ξ , ψ , γ are defined as

A ≡ 4F 4+6F 2r1+26 r21 , B ≡ F 4+39F 2r1−24 r21 , C ≡ (4F 4+3F 2r1+5 r21 )/(F
2+r1) ,

ξ ≡ | x̃− x |/r1 , ψ ≡ −( z̃+ z)/(r1 + | x̃− x |) , γ ≡ −( z̃ + z)/
√
( ỹ − y)2+ ( z̃ + z)2 .

The analytical approximation (6) to the local flow component GL in (3) is considerably simpler
than the exact integral representation (4) and the alternative approximations, based on table
interpolations or polynomial expansions, previously given in the literature [18-20] . In particular,
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the approximation (6) is valid in the entire flow region 0 ≤ r1 ≤ ∞ . The local flow component
in the gradient ∇̃G of G is evaluated via analytical differentiation of (6). The expressions for
∇̃G are given in [4,5] for the Green functions of thin-ship theory and the theory of flow due to a
free-surface pressure patch, and in [8] for the general case of flow about an arbitrary ship hull.

The function L in expression (4) for the local flow component GL in the Green function G

is depicted in Fig.6 in the three particular cases a = 0 (left), b = 0 (center) or c = 0 (right), i.e.

for x̃ − x = 0 , ỹ − y = 0 or z̃ + z = 0 . The function L is evaluated using the (exact) integral

representation (4) or the simple analytical approximation (6) in this figure. This comparison

shows that the approximation (6) is not highly accurate. However, it is asymptotically correct

in both the near-field limit r1 → 0 and the far-field limit r1 → ∞ . This property, important

because the two limits yield major contributions, may be a primary reason for the fact that

the calculations reported in [8,4,5] show that the simple analytical approximations to the local

flow component (and their gradients) given in these three studies yield flow velocities in close

agreement with results of calculations based on exact integral representations. Thus, the classical

Green functions for steady ship waves have been greatly simplified, and a major stumbling block

for the practical use of the Green function method has been removed.

II – 2 Practical evaluation of 3D flows due to source distributions

Another well-known basic difficulty associated with the practical use of the Green function
method is that the flow velocity is defined by distributions of singularities (sources and dipoles)
on a ship hull surface and around the mean ship waterline that require numerical evaluation of
singular functions (the Green function and its gradient). However, this second stumbling block
can also be removed, using a straightforward regularization approach [8] . This regularization
approach is now briefly summarized.

[8] considers the basic task of evaluating the nondimensional flow velocity ũ ≡ Ũ/Vs due
to a distribution of sources on a given (mean wetted) ship hull surface H. This flow velocity is
defined as

ũ(x̃) ≡
∫
H
da(x)∇̃G( x̃ ,x)σ(x) . (7)

Here, da(x) stands for the differential element of area of the surface H at a point x of H, and
σ(x) is the source density at x . The usual Neumann-Kelvin theory of wavemaking also requires
evaluation of the velocity due to a distribution of sources around the mean ship waterline, i.e.
the intersection curve between the ship mean wetted hull surface H and the mean free-surface
plane z = 0 . This basic task is also considered in [8] .

The regularization method expounded in [8] is explained here by only considering the funda-
mental free-space singularity 1/r in (3). Thus, we consider the flow velocity ũ r and the related
’regularized’ velocity component ũ reg

r that correspond to the source distribution (7) with G
taken as 4πG = −1/r , i.e.

4π ũ r (x̃) =

∫
H
da(x)

x̃− x

r3
σ(x) 4π ũ reg

r (x̃) =

∫
H
da(x)

( x̃− x) σ(x)

r3+ δ6/(δ3+ r3)
. (8)

Here, δ stands for a small positive real number. Thus, the velocity component ũ r is expressed as
the sum of a ‘regularized’ velocity ũ reg

r and the ‘singular’ velocity ũS
r ≡ ũ r− ũ reg

r that accounts
for the difference between the singular integrand ( x̃−x)/r3 and the corresponding ‘regularized’
integrand for the velocities ũ r and ũ reg

r . Expressions (8) readily yield

4π ũS
r (x̃) ≡

∫
H
da(x)

(
x̃− x

r3
− x̃− x

r3+ δ6/(δ3+ r3)

)
σ(x) = δ6

∫
H
da(x)

( x̃− x) σ(x)

r3(δ6 + δ3r3 + r6)
.

A straightforward analysis yields

2 ũS
r (x̃+ ν δ ñ) ≈ σ̃(x̃)Φ(ν) ñ(x̃) for δ ≪ 1 .
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Here, 0 ≤ ν and the unit vector ñ ≡ ñ(x̃) is normal to the hull surface H and points into the
fluid. Furthermore, the function Φ(ν) is defined as

Φ(ν) ≡ 1

2

∫ ∞

0

dt

T 3(1+ν 3T 3 +ν 6T 6)
≈ 1− µ (3.63− 8.61µ+ 11.18µ2− 5.87µ3)/(1+ ν3)

1+ 1.65 ν + 7ν 6

with T ≡
√
1+ t and µ ≡ ν3/(1 + ν3) . We then have Φ → 1 and ũS

r = σ̃ ñ /2 as ν → 0 .
This expression shows that the velocity component ũS

r at a point x̃ of a ship hull surface H is
normal to H and equal to half the source density σ̃ at x̃ , in agreement with a classical result
of potential-flow theory. The function Φ(ν) vanishes rapidly as ν increases. Indeed, we have
Φ ∼ 1/(7ν 6) as ν → ∞ and Φ < 0.1% for ν greater than approximately 2.3 .

Thus, at a flow field point x̃ located at a ship hull surfaceH, the flow velocity ũ(x̃) associated
with the source distribution (7) on a ship hull surface H, or a similar distribution of sources
around a ship waterline, and the Green function G given by (3) and (6) is expressed in [8] as

ũ(x̃) = ũW (x̃) + ũ reg
L (x̃) + σ̃(x̃) ñ(x̃)/2 .

This flow representation expresses the flow velocity ũ due to a surface (or line) distribution of
sources, with density σ , on a ship hull surface (or waterline) as the sum of a wave component
ũW , a ‘regularized’ local flow component ũ reg

L , and a component σ̃(x̃) ñ(x̃)/2 that accounts
for the contribution of the singularity in the Green function (3) and is defined explicitly in
terms of the source density σ and the unit vector n to the hull surface H . The wave component
ũW is associated with the Fourier integral in expression (3) for the Green function and is
defined in a straightforward way using a Fourier-Kochin representation ; i.e. ũW is defined by a
Fourier integral that involves a wave-spectrum function given by a surface (or line) distribution

of elementary waves e (1+ t2 )z /F 2− i
√
1+ t2 (x+ ty )/F 2

on the ship hull surface H (or waterline).
Thus, the wave-spectrum function is given by a surface (or line) integral with integrand that
only involves continuous ordinary functions (exp , cos , sin) of real arguments. Likewise, the
regular local flow component ũ reg

L is given by a surface (or line) integral with integrand that
only involves continuous ordinary (algebraic) functions of real arguments.

The flow representation given in [8] and briefly summarized here is then considerably simpler

than the classical mathematical representations, which involve the exponential integral function

E(ζ) of a complex argument ζ or a related special function, previously used in the literature.

The surface (or line) integrals that define the wave-spectrum function in the Fourier-Kochin

representation of the wave component ũW and the local flow component ũ reg
L can readily be

integrated analytically (for the wave-spectrum function) or via ordinary Gaussian quadrature

rules (for the local flow component −1/r + GL in the expression for G), as shown in [8] for

a piecewise linear distribution of sources over flat triangular hull panels or straight waterline

segments. The method is then particularly simple and well suited for practical calculations.

CONCLUSION AND ONGOING WORK

As already noted in the introduction, the analytical relations for ship bow waves and the

flow-calculation method summarized here are directed toward routine applications at early ship

design stages, including concept and preliminary design, and hull-form optimization [21-25] .

Our ongoing joint research work considers three main tasks : (a) extend the analytical bow wave

profile given in [6] for a (four-parameter) family of fine nonbulbous ship bows to a more general

(seven-parameter) family of bulbous bows, (b) apply the practical flow-calculation method given

in [8] to investigate four alternative potential flow models based on the Neumann-Kelvin theory

and variations of that classical theory, and (c) consider hull-form optimization that seeks to

develop ship forms with reduced drag and motions [25] .

11



[1] Noblesse F., Delhommeau G., Guilbaud M., Yang C. (2008) The Rise of Water at a Ship Stem, J. Ship Research,

52 :89-101

[2] Noblesse F., Delhommeau G., Guilbaud M., Hendrix D., Yang C. (2008) Simple analytical relations for ship bow waves,

J. Fluid Mechanics, 600 : 105-132

[3] Delhommeau G., Guilbaud M., David L., Yang C., Noblesse F. (2009) Boundary between unsteady and overturning bow

wave regimes, J. Fluid Mechanics, 620 :167-175

[4] Noblesse F., Delhommeau G., Kim H.Y., Yang C. (2009) Thin-ship theory and influence of rake and flare, J. Engineering

Mathematics, 64 :49-80

[5] Noblesse F., Delhommeau G., Yang C. (2009) Practical evaluation of steady flow due to a free-surface pressure patch,

J. Ship Research, 53 :137-150

[6] Noblesse F., Delhommeau G., Yang C., Kim H.Y., Queutey P. (2011) Analytical bow waves for fine ship bows with rake

and flare, J. Ship Research, in press (publication scheduled for March 2011)

[7] Noblesse F., Delhommeau G., Queutey P., Yang C. (submitted) A simple approximate theory of overturning ship bow

waves

[8] Noblesse F., Delhommeau G., Huang F., Yang C. (submitted) Flow due to a distribution of sources on a steadily-

advancing ship hull

[9] Noblesse F., Hendrix D., Faul L., Slutsky J. (2006) Simple analytical expressions for the height, location, and steepness

of a ship bow wave, J. Ship Research, 50 :360-370

[10] Queutey P., Visonneau M. (2007) An Interface Capturing Method for Free-Surface Hydrodynamic Flows. Computers

& Fluids. 36 :1481-1510
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