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Résumé 
 
Un logiciel en MATLAB pour le problème de résistance de vagues avec condition de surface 
libre non linéaire est utilisé en combinaison avec des estimations empirique pour la résistance 
visqueuse dans une approche d’optimisation formelle en visant d’améliorer un prototype 
existant d’un AUV. L’amélioration est confirmée par des essais dans un bassin d’essais des 
carènes.  
 

Summary 
 

A wave resistance code with nonlinear free-surface condition implemented in MATLAB is 
used with empirical estimates for viscous resistance in a formal optimization approach aimed 
to improve an existing prototype for an AUV. The improvement is confirmed by model tests. 
 
I. INTRODUCTION 
 
Autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs) are 
increasingly used in offshore, oceanographic and navy applications. The autonomy of these 
vehicles is frequently limited by power requirements. Bertram and Alvarez (2006) discussed 
general guidelines for hull design of such vehicles, showing that designs following torpedo 
or submarine shapes are suboptimal.  
 
The ‘Cormoran’, Figure 1, is a simple low-cost coastal water observing platform, a hybrid 
between AUV and ASV. It moves at the sea surface and dives to make vertical profiles of the 
water column following an established plan, Figure 2. The vehicle is immersed by flooding 
an internal reservoir with seawater. Conversely, a piston pumps the seawater back from the 
internal reservoir to the sea to emerge. Gathered data is transmitted in real time to the 
laboratory. The prototype has a torpedo shape with a total length of 1.5 m, a diameter of 16 
cm, and a displacement of 25 kg. The speed of 1±0.1 m/s results in a Froude number of 
Fn=0.26±0.025. Most of the time, the Cormoran will operate in snorkeling condition. The 
main body is then close enough to the water surface to make waves, and the mast pierces the 
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water surface creating its own small wave system. 
 

 

 
 

 

Figure 1. ‘Cormoran’ at IMEDEA Figure 2. Cormoran working procedure 
 
II. RESISTANCE COMPUTATION 
  
The wave resistance in snorkeling and surfaced condition can be determined using advanced 
wave resistance codes, Bertram (2000). These codes neglect viscosity and the action of the 
propeller, but determine iteratively the position of the free surface and the dynamic sinkage 
and trim. For a submerged body in snorkeling condition, the hydrostatic restoring forces are 
negligibly small. We assume that the automatic controller of the AUV will keep the AUV on 
an even keel and at constant water depth. We then have a simplified physical model as 
described in the following. 
 
We consider a body moving with constant speed V in water of infinite depth, submerged at 
constant depth near the free surface of the water. The following simplifications are assumed: 

- Water is incompressible, irrotational, and inviscid. 
- Surface tension is negligible. 
- There are no breaking waves. 
- The hull has no knuckles which cross streamlines.  
- Appendages and propellers are not included in the model. 

 
The equations are formulated here in a right-handed Cartesian coordinate system with x 
pointing forward towards the bow and z pointing upward. The moment about the y-axis is 
positive clockwise. For more details on deriving the conditions and the numerical techniques, 
see Bertram (2000). For the considered ideal flow, continuity gives Laplace's equation which 
holds in the whole fluid domain. A unique description of the problem requires further 
conditions on all boundaries of the fluid: 
 

(1) Hull condition:   Water does not penetrate the ship's surface. 
(2) Kinematic condition:   Water does not penetrate the water surface. 
(3) Dynamic condition:   There is atmospheric pressure at the water surface.  
(4) Radiation condition:   Waves created by the ship do not propagate ahead.  
(5) Decay condition:   The flow is undisturbed far away from the ship. 
(6) Open-boundary condition:  Waves generated by the ship pass unreflected any  

artificial boundary of the computational domain.  
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For the assumed ideal fluid, there exists a velocity potential φ such that v=∇φ. v indicates the 
velocity vector. The velocity potential φ fulfils Laplace's equation in the whole fluid domain:  
 

φxx+φyy+φzz = 0 (1) 
 
A coordinate x,y,z as index indicates here a partial derivative with respect to that coordinate.  
 
The hull condition requires that the normal velocity on the hull vanishes: 
 

n⋅∇φ = 0 (2) 
 
n is the inward unit normal vector on the ship hull. 
 
The kinematic free-surface condition gives at the water surface z=ζ: 
 

∇φ⋅∇ζ = φz (3) 
 
For simplification, we write ζ(x,y,z) with ζz = 0. 
 
The dynamic condition (atmospheric pressure at water surface) gives at z=ζ: 
 

½ (∇φ)2 + gz = ½ V2 (4) 
 
The problem features two special problems requiring an iterative solution approach: (a) A 
nonlinear boundary condition appears on the free surface, due to the dynamic boundary 
condition. (b) The free surface position is not a priori known. We approximate the potential φ 
by an arbitrary approximation Φ, and the free surface ζ by an arbitrary approximation Z. 
Combining the dynamic and kinematic boundary conditions and linearizing consistently 
around the approximations yields at z=Z, Jensen et al. (1986), Bertram (2000): 
 

2 (a⋅⋅⋅⋅∇φ + Φx Φy φxy + Φx Φz φxz + Φy Φz φyz) + Φx
2 φxx + Φy

2 φyy+ Φz
2 φzz  

+g φz-B ∇Φ ∇φ  = 2 a⋅⋅⋅⋅∇Φ - B( ½ ((∇Φ)2+V2)-g Z) 
(5) 

 
with vertical particle acceleration a = ½ ∇((∇Φ)2) and B = (a⋅⋅⋅⋅∇Φ + g Φz )z/(g+a3). The 
index 3 indicates the third component of the vector. This condition is rather complicated 
involving up to third derivatives of the potential, but it can be simply repeated in an iterative 
process which is started with uniform flow (Φ = {-Vx,0,0}) and no waves (Z=0). In each 
iterative step, wave elevation and potential are updated yielding successively better 
approximations for the solution of the nonlinear problem. Convergence is usually rapid. 
Typically 3 or 4 iterations suffice. Once a potential has been determined, the forces can be 
determined by direct pressure integration on the hull: 
 

f1 = �S p n1 dS  
f3 = �S p n3 dS (6) 

f5 = �S p (z n1-x n3) dS  
 
S is the wetted surface. p is the pressure determined from Bernoulli's equation: 
 

p = ½ ρ (V2-(∇φ)2) (7) 
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ρ is the density of water. The force in x-direction, f1, is the negative wave resistance. The 
nondimensional wave resistance coefficient is: 
 

CW = - f1/(½ ρ V2 S) (8) 
 
The problem is solved using classical first-order Rankine panels as proposed by Hess and 
Smith (1962,1964) for the body. Desingularized Rankine point sources are used above the 
free surface. The desingularization distance is twice the grid spacing in x-direction. This 
distance was found to give more reasonable results than the dimensionally inconsistent 
recommendation of Beck et al. (1999). During the iteration, the collocation points at the free 
surface are updated, but the position of the sources remains unchanged. Mirror images of 
panels are used in y direction with respect to y=0. The decay condition - like the Laplace 
equation - is automatically fulfilled by all elements. The radiation condition and the open-
boundary condition are fulfilled by adding an extra row of source elements at the downstream 
end of the computational domain and an extra row of collocation points at the upstream end, 
Jensen et al. (1986), Thiart and Bertram (1998). For equidistant grids this can also be 
interpreted as shifting or staggering the grid of collocation points vs. the grid of source 
elements. This technique shows absolutely no numerical damping or distortion of the wave 
length, but requires all derivatives in the formulation to be evaluated numerically. 
 
The numerical model was implemented in Matlab, Alvarez and Bertram (2007). The 
advantage of Matlab is an easy visualization without need of external software. At a later 
stage, the method shall be transposed into Fortran for computational efficiency. The 
computational time on a Pentium IV processor machine of 3.06 GHz is typically 40 s for a 
grid of 1000 elements (unknowns).  
 

 
Figure 3. Wave resistance coefficient computed for the spheroid 
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III. MODEL VALIDATION 
 
The wave resistance of an elongated spheroid with aspect ratio 1:5 and draft T=0.245⋅L, 
where L is the length of the spheroid, was used as a test case. For this spheroid, results can be 
compare with experiments and previous computations based on two different Rankine panel 
methods, Bertram et al. (1991). The numerical model has been implemented discretizing the 
body with 1127 panels on one half of the hull and a cosine law partition. The free surface was 
discretized with 1037 panels. Figure 3 compares the non-linear results for wave drag with 
results published by Bertram et al. (1991). The agreement is very good showing that the 
method was correctly implemented.  
 
IV. OPTIMIZATION APPROACH 
 
We neglect for the time being the snorkel, assuming no interaction between the wave systems 
of main body and the snorkel. This assumption may be justified, as the Froude numbers for 
main body and snorkel are different by two orders of magnitude. The length of the body is 
1.5 m, the length of the snorkel in the waterline is 0.02 m. 
 
We split the body in three simple segments of respective lengths La, Lc, Lf, for aft, center, and 
front part, Figure 4. The aft part and the front part follow from: 
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rb is the radius at the position x and R is the radius of the central cylinder.  
 

 
Figure 4. Geometry for optimization 

 
The body was optimized for minimum total resistance averaged for 0.9, 1, and 1.1 design 
speed. The total resistance is computed as sum of wave resistance near the free, and the 
frictional resistance following ITTC’57. Wave resistance was computed with the Matlab 
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wave resistance code described above. A total of 843 source elements were distributed on the 
body hull (343) and free surface (520), employing symmetry in y by mirror images of the 
elements, Figure 5. 
 

 
Figure 5: Grid for wave resistance computation 

 
Constraints for the optimization were constant displacement volume and maximum length of 
the vehicle of 1.5 m. The stern angle of the aftbody was limited to a maximum value of 
θ=25°. Model test experience indicates that for the body in unpropelled condition, a stern 
cone angle of θ=20° can be regarded as a limit for flow separation for a parabolic outline of 
the aftbody, Bertram and Alvarez (2006). For the submarine in propelled condition, the flow 
acceleration due to the propeller prevents separation for much higher cone angles. A thicker 
aftbody is desirable for various reasons (internal arrangement, maneuverability, decreased 
frictional resistance due to smaller wetted surface). 
 
We used a simulated annealing optimization algorithm which proved to yield better results 
than the standard sequential quadratic programming optimization routine of Matlab version 7. 
Comparative calculations revealed that the objective function has shallow and slightly 
oscillating contour lines making heuristic optimization algorithms more suitable than gradient 
based algorithms. 
 
V. RESULTS 
 
Bertram and Alvarez (2006) describe extensive preliminary studies of the optimization, 
which investigated: 

- the influence of different computational models including a simple Michell integral 
approach which was found to be insufficient.  

- the influence of various constraints 
- influence of numerical grid resolution  

 
The optimization required a total of 808 evaluations of the cost function leading to a total 
computation time of 15 hours. Table I and Figure 6 summarize the results. The optimized hull 
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shape is shorter, with a much shorter parallel midbody and larger diameter, which also 
improves propulsion as a larger propeller diameter can be chosen. The power requirements 
then are effectively reduced by approximately 20%. The next applications released na and nf 
to allow more arbitrary shapes. The tendency is to eliminate a parallel midbody completely 
which is feasible for a very small platform like the Cormoran, that does not require flat 
docking facilities.  
 

Table I: Results of ‘optimization’ 
 original ‘optimized’ 
na 3 2 
nf 2.3 1.3 
Total length 1.42 1.49 
Length of aft part 0.38 0.73 
Length of forward part 0.24 0.54 
Radius 0.08 0.095 
Total resistance 2.14 N 1.54 N 

 

  
Original ‘Optimized’ 

Figure 6. Geometries in optimization 
 
The original prototype hull and the final optimized hull were tested in the ship model basin of 
the University of Trieste in Italy, Figure7. Preliminary results indicate that the optimized hull 
generates less wave resistance than the original shape for the range of speed considered. 
Conversely, the original shape is more efficient at speeds higher than 1.5 m/s. 
 

  
Figure 7. Original (left) and optimized (right) hull in model tests 

 
VI. CONCLUSION 
 
The presented work is in progress. The optimization model could be extended including 
further important hydrodynamic aspects, but these would require significantly more expense. 
The most important hydrodynamic aspects in our view are: 
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- Optimization of the propeller, including an investigation of the effect of nozzles.  
- Consideration of the induced resistance in maneuvering, both for the control foils and 

the hull 
- Consideration of the effect of seakeeping (in snorkeling condition)  
- Consideration of viscosity in the model; probably least important as flow separation is 

unlikely based on empirical knowledge for submarine model testing and the surface 
friction is considered by a simple ITTC’57 formula.  

 
Despite the limitations of the optimization model, the application indicates that underwater 
drones can be improved by using relatively classical hydrodynamics with a computational 
effort that allows incorporation in formal optimization even in the design stage.  
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