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Summary

A new formulation of the second-order difference frequency loads is proposed, based on the Lagally
theorem. With this formulation, the quadratic part of the QTFs is expressed as the sum of two integrals
over the body surface plus one integral over the interior free surface. The good convergence properties of
this new formulation are illustrated over three test cases: a vertical cylinder standing on the sea-floor, a
floating hemisphere and a FPSO.

Résumé

On présente ici une nouvelle formulation des efforts de deuxième ordre à basse fréquence, basée sur le
théorème de Lagally. Dans cette formulation, la partie quadratique des efforts de deuxième ordre s’exprime
comme la somme de deux intégrales sur la carène plus une intégrale sur la surface libre intérieure. Des
validations sont présentées pour un cylindre vertical posé sur le fond, une sphère flottante et un FPSO.



1 Introduction

This paper is devoted to the numerical evaluation of the so-called QTFs: Quadratic Transfer Functions
of the difference frequency wave induced second-order loads. This is an old problem which has been
regaining interest in the past years, mostly due to the development of LNG related activity. The reference
case is an off-loading terminal, in restricted waterdepth, with the LNG-carrier alongside a GBS or FSRU
(Floating Storage Regazeification Unit). To design the mooring system, second-order wave loads acting
on either structure are required.

In regular waves the QTFs reduce to the drift force. Most sea-keeping codes compute the drift force
following the ’far-field’ and/or ’near-field’ formulations:

– the far-field formulation was first introduced by Maruo (1964) and extended by Newman (1967) to
the drift moment in yaw. In this formulation the change of momentum of the fluid within a control surface
surrounding the body is related to the pressure forces acting on the body and on the control surface.
The time-averaged value of the hydrodynamic loads can then be related to pressure force and momentum
flux at the control surface. When this control surface is taken to infinity the vertical integration can be
performed analytically and only one azimuthal integration, involving the Kochin function, needs to be
done numerically. This method only yields the horizontal components of the drift force (surge, sway and
yaw). When several bodies are involved, it yields the sum of the drift forces, unless several control surfaces
are taken surrounding each body. It cannot be extended to computing the QTFs in bichromatic seas.

– the near-field method, proposed by Pinkster and van Oortmerssen (1977), consists in directly inte-
grating the pressure on the body surface, retaining all second-order terms. It yields the six components of
the drift force and it can be extended to the calculation of the QTFs in bichromatic seas. Its drawback is
that it is less accurate numerically than the far-field method, particularly when the hull has sharp corners
where the flow is singular and numerical integration of such terms as −1/2 ρ∇Φ2 presents difficulties.

In DiodoreTM, the drift force is obtained following another method, inspired from the Lagally theorem
(Landweber 1967). This method was proposed by Guével & Grekas (1981). A more convincing proof of
their formulation is given in Ledoux et al. (2006). As compared to the two classical formulations, it offers
many advantages: it is very easy to implement, it has better convergence properties than the near-field
method, it remains valid when several bodies are involved. It has two minor drawbacks: it does not deliver
the vertical components of the drift force (except for fully submerged bodies) and usual tricks to remove
irregular frequency effects are prohibited.

In irregular seas the full QTF matrix needs to be known to express the slowly-varying drift force. In
many cases so-called Newman’s approximations, based on the knowledge of the diagonal of the matrix
only (the drift force in regular waves), provide an acceptable approximation. When the stiffness of the
mooring system increases and/or the waterdepth decreases however, Newman’s approximations underes-
timate the excitation forces, by far. Better approximations, or exact evaluation of the full QTF matrix,
are needed.

In this paper we propose a new formulation of the second-order loads in bichromatic seas, in the manner
of the Lagally formulation applied to the determination of the drift force, as proposed in Ledoux et al.
(2006). Section 2 presents the theoretical derivations. Validations are given in the following section.

2 Theoretical developments

2.1 Second-order loads

Be S the wetted hull of the considered body. We denote with a subscript 0 the wetted surface S0 at
rest.

We surround the body by a fixed control surface Σ. Be Ω the fluid domain bounded by S, Σ and the
free surface within, be F . The normal vector −→n is outward the fluid domain Ω. The cartesian coordinate
system xyz is such that z = 0 is the free surface at rest. The waterdepth is constant equal to h.

We rely on potential flow theory, with the velocity potential Φ developed as εΦ(1) + ε2 Φ(2) + . . ..
Conservation of momentum of the fluid within Ω writes:

d
dt

∫ ∫ ∫

Ω

ρ∇Φ dΩ = −−→F −
∫ ∫

Σ

p −→n dS − ρ

∫ ∫

Σ

∇Φ
∂Φ
∂n

dS −
∫ ∫ ∫

Ω

ρ g
−→
k dΩ (1)



where −→F is the hydrodynamic force applied on S and −→k the vertical unit vector. Equation (1) can be
rewritten

−→
F = −ρ

d
dt

∫ ∫ ∫

Ω

∇Φ dΩ−
∫ ∫

Σ

[
p −→n + ρ∇Φ

∂Φ
∂n

]
dS −

∫ ∫

S∪Σ∪F

ρ g z−→n dS (2)

Now we take the control surface Σ coinciding with S0. This means that the volume Ω becomes algebraic,
with a local thickness, along S0, equal to −−→X (1) ·−→n 0 to first-order, −→X (1)

being the local first-order motion
of the hull and −→n 0 the normal vector to S0 into the fluid. Retaining all second-order terms in equation
(2), we obtain:

−→
F

(2)
= ρ

d
dt

∫ ∫

S0

(−→
X

(1) · −→n 0

)
∇Φ(1) dS + ρ

∫ ∫

S0

Φ(2)
t
−→n 0 dS

−1
2

ρ g

∫

Γ0

η(1)2
−→n 0

cos θ
dΓ + ρ

∫ ∫

S0

[
1
2

(
∇Φ(1)

)2 −→n 0 −
(
∇Φ(1) · −→n 0

)
∇Φ(1)

]
dS

+−→F (2)

HS + ρ g

∫

Γ0

−→
X

(1) · −→n 0

cos θ
η(1) −→k dΓ (3)

Here Γ0 is the waterline (at rest), η(1) is the first-order free surface elevation and θ is the angle between
the normal vector −→n 0 and the horizontal plane. This expression agrees with Chen (2007) who started
from the pressure integration formulation and applied integral transforms based on Stokes formula (see
also Lee, 2006).

The last line in (3) contains only hydrostatic terms acting in the vertical direction. The first term is the
hydrostatic restoring force, in still water, taken to second-order (see Molin & Marion 1985). The second
one is the weight of water, in between S and S0, above the still water level. In this paper we will be only
concerned with the horizontal components of the QTFs. Hence we discard the last two terms.

Finally we split −→F (2)
into two components, the first one involving quadratic expressions of first-order

quantities and the second one involving linearly the second-order potential:

−→
F

(2)

1 = ρ
d
dt

∫ ∫

S

(−→
X

(1) · −→n
)
∇Φ(1) dS

−1
2

ρ g

∫

Γ

η(1)2 −→n H dΓ + ρ

∫ ∫

S

[
1
2

(
∇Φ(1)

)2 −→n −
(
∇Φ(1) · −→n

)
∇Φ(1)

]
dS (4)

−→
F

(2)

2 = ρ

∫ ∫

S

Φ(2)
t
−→n dS (5)

with −→n H the normal vector to Γ within the horizontal plane. For the sake of simplicity, since there can
no longer be ambiguity, we have dropped the 0 subscripts.

2.2 Lagally formulation

Here we are only concerned with the first component, −→F (2)

1 .
We assume that the perturbed part of the velocity potential Φ(1) is generated by a source distribution

σ(1) on the wetted surface S. As a result a flow is generated inside the hull as well. Hence we distinguish
with i and e subscripts the velocity potentials inside and outside the body:

Φ(1)
i = Φ(1)

I + Φ(1)
Pi Φ(1)

e = Φ(1)
I + Φ(1)

Pe (6)

with Φ(1)
I the incident velocity potential accounting for incoming waves and perturbations originating

from neighboring bodies.
Within the body, the following identity holds:

∫ ∫

S∪Fi

[
1
2

(
∇Φ(1)

i

)2 −→n −
(
∇Φ(1)

i · −→n
)
∇Φ(1)

i

]
dS ≡ −→0 (7)



with Fi the internal free surface. This well-known identity directly results from
(−→

V · ∇
)−→

V =
1
2
∇ (

V 2
)

+ Rot−→V ∧ −→V

Subtracting (7) to (4) and accounting for

∇Φ(1)
e −∇Φ(1)

i = σ(1) −→n (8)

we obtain

−→
F

(2)

1 = ρ
d
dt

∫ ∫

S

(−→
X

(1) · −→n
)
∇Φ(1) dS

−ρ

∫ ∫

S

σ(1)

(
∇Φ(1)

e − 1
2

σ(1) −→n
)

dS − 1
2

ρ g

∫

Γ

η(1)
e

2 −→n H dΓ + ρ

∫ ∫

Fi

Φ(1)
iz ∇Φ(1)

i dS

only valid, as written earlier, for the horizontal components.

To progress further and transform the integral over the internal free surface, we must introduce the
time dependence of the velocity potential. In Ledoux et al. (2006) regular waves are assumed, i.e. one
is concerned with the mean drift force (the diagonal of the QTF matrix). Here we consider bichromatic
seas.

We assume therefore that the potential Φ(1) takes the form

Φ(1)(x,y,z,t) = <{
A1 ϕ1(x,y,z) e−i ω1t + A2 ϕ2(x,y,z) e−i ω2t

}
(9)

with A1, A2 the wave amplitudes of the two components at frequencies ω1 and ω2. All first-order quantities
take a similar form.

We are only interested in second-order quantities at the difference frequency ω1−ω2. They are obtained
through the identity

<{
B1 e−i ω1t + B2 e−i ω2t

}×<{
C1 e−i ω1t + C2 e−i ω2t

}
=

1
2
<

{
(B1 C∗2 + B∗

2 C1) e−i (ω1−ω2) t
}

+ . . .

(10)
where * means the conjugate complex number.

The difference frequency second-order loads take the form

−→
F

(2)
= <

{
A1 A2

−→
f

(2)
e−i (ω1−ω2)t

}
(11)

with −→f (2)
(ω1,ω2) twice the QTF as usually defined.

The integral over the interior free surface can then be transformed in the following way
∫ ∫

Fi

(ϕ1iz ∇Hϕ∗2i + ϕ∗2iz ∇Hϕ1i) dS =
1
g

∫ ∫

Fi

(
ω2

1 ϕ1i ∇Hϕ∗2i + ω2
2 ϕ∗2i ∇Hϕ1i

)
dS

=
ω1 ω2

g

∫ ∫

Fi

(ϕ1i ∇Hϕ∗2i + ϕ∗2i ∇Hϕ1i) dS +
ω1 − ω2

g

∫ ∫

Fi

(ω1 ϕ1i ∇Hϕ∗2i − ω2 ϕ∗2i ∇Hϕ1i) dS

=
ω1 ω2

g

∫ ∫

Fi

∇H (ϕ1i ϕ∗2i) dS +
ω1 − ω2

g

∫ ∫

Fi

(ω1 ϕ1i ∇Hϕ∗2i − ω2 ϕ∗2i ∇Hϕ1i) dS

=
ω1 ω2

g

∫

Γ

ϕ1i ϕ∗2i
−→n HdΓ +

ω1 − ω2

g

∫ ∫

Fi

(ω1 ϕ1i ∇Hϕ∗2i − ω2 ϕ∗2i ∇Hϕ1i) dS

Here ∇H designates the horizontal gradient (∂/∂x,∂/∂y).



On the hull and waterline, the interior and exterior potentials are identical (with a source distribution).
As a result the integrals over Γ cancel out. So finally the quadratic second-order force is obtained as

−→
f

(2)

1 = −1
2

ρ

∫ ∫

S

(σ1
−→v ∗2 + σ∗2 −→v 1) dS

− i (ω1 − ω2)
2

ρ

∫ ∫

S

[(−→x 1 · −→n ) ∇ϕ∗2 + (−→x ∗2 · −→n ) ∇ϕ1] dS

+
ω1 − ω2

2g
ρ

∫ ∫

Fi

(ω1 ϕ1i ∇ϕ∗2i − ω2 ϕ∗2i ∇ϕ1i) dS (12)

with
−→v j = ∇ϕj − 1

2
σj
−→n = ∇ϕIj +

1
4π

∫ ∫

S

σj(Q) ∇P G(P,Q) dSQ, j = 1,2 (13)

and G the Green function.
When ω1 = ω2 this expression reduces to twice the normalized drift force, as given in Ledoux et al.

(2006). In that paper it is shown that the Rankine part of the Green function can be removed when
computing the velocity −→v j , improving numerical convergence. In bichromatic seas the Rankine part can
no longer be removed.

The two additional terms are of order ω1−ω2 and purely imaginary to the leading order (whereas the
first term is real to the leading order in ω1−ω2). If only an O(ω1−ω2) approximation is looked for, they
can be obtained as

−→
f

(2)

1L = i ρ (ω1 − ω2)
[∫ ∫

S

<{(−→x · −→n ) ∇ϕ∗} dS +
ω

g

∫ ∫

Fi

={ϕi ∇ϕ∗i } dS

]
(14)

reducing the computational burden (calculations need be done for all ωi instead of for all couples (ωi,ωj)).

It is noteworthy that the Lagally formulation involves an integral over the interior free surface Fi (the
calculation of which presents no numerical difficulty).

It is straight-forward to establish that the quadratic moment in yaw, with respect to the mean position
G0 of the center of gravity, is obtained from

−→c (2)
1 = −1

2
ρ

∫ ∫

S

−→r ∧ (σ1
−→v ∗2 + σ∗2 −→v 1) dS

− i (ω1 − ω2)
2

ρ

∫ ∫

S

−→r ∧ [(−→x 1 · −→n ) ∇ϕ∗2 + (−→x ∗2 · −→n ) ∇ϕ1] dS

+
ω1 − ω2

2g
ρ

∫ ∫

Fi

−→r ∧ (ω1 ϕ1i ∇ϕ∗2i − ω2 ϕ∗2i ∇ϕ1i) dS (15)

with −→r the vector (x− xG0 , y − yG0 , z − zG0). This is only valid for the yaw moment.

2.3 Contribution due to the second-order potential

In this section we address the evaluation of the second part of the second-order loads, that is

−→
F

(2)

2 = ρ

∫ ∫

S

Φ(2)
t
−→n dS (16)

The second-order potential Φ(2) consists in an incident and a perturbation part:

Φ(2) = Φ(2)
I + Φ(2)

D = <
{

A1 A2

[
ϕ

(2)
I + ϕ

(2)
D

]
e−i (ω1−ω2) t

}
(17)

2.3.1 Second-order incident potential

At first-order of approximation the incoming wave system consists in two Airy components, with the
free surface elevation

η
(1)
I = A1 sin[k1 x cos β1 + k1 y sinβ1 − ω1 t] + A2 sin[k2 x cosβ2 + k2 y sin β2 − ω2 t] (18)



and the velocity potential

Φ(1)
I = −A1 g

ω1

cosh k1(z + h)
cosh k1h

cos[k1 x cosβ1 + k1 y sin β1 − ω1 t] (19)

−A2 g

ω2

cosh k2(z + h)
cosh k2h

cos[k2 x cosβ2 + k1 y sin β2 − ω2 t] (20)

The associated second-order potential taking place at the difference frequency ω1−ω2 is obtained as (e.g.
see Molin, 2002):

ϕ
(2)
I = −i

q

−(ω1 − ω2)2 + g∆k th∆kh

ch∆k(z + h)
ch∆kh

ei (
−→
k 1−

−→
k 2)·

−→
R (21)

with
−→
k 1 =

(
k1 cos β1

k1 sin β1

) −→
k 2 =

(
k2 cos β2

k2 sin β2

) −→
R =

(
x
y

)
(22)

∆k = ‖−→k 1 −−→k 2‖ =
√

k2
1 + k2

2 − 2k1k2 cos(β1 − β2) (23)

q = −1
2

(
ω3

1

sh2k1h
− ω3

2

sh2k2h

)
− ω1ω2 (ω1 − ω2)

(
cos(β1 − β2)
th k1h th k2h

+ 1
)

(24)

The contribution of ϕ
(2)
I to the loads is easily obtained as

−→
f

(2)

2I = −i ρ (ω1 − ω2)
∫ ∫

S

ϕ
(2)
I
−→n dS (25)

The associated moment is

−→c (2)
2I = −i ρ (ω1 − ω2)

∫ ∫

S

ϕ
(2)
I
−→r ∧ −→n dS (26)

2.3.2 Second-order diffraction potential

The second-order diffraction potential verifies the Laplace equation in the fluid domain, the no-flow
condition at the bottom, decaying conditions at infinity, and the following boundary conditions on the
hulls and on the free surface.

Body boundary condition On each hull the second-order diffraction potential Φ(2)
D (x,y,z,t) verifies

the following no-flow condition

∇Φ(2)
D · −→n = −∇Φ(2)

I · −→n + −̇→
X

(2)

1 · −→n +
(−̇→

X
(1)

−∇Φ(1)

)
·
(−→

A
(1) ∧ −→n

)
−

(−→
X

(1)∇
)
∇Φ(1) · −→n (27)

or

∇Φ(2)
D · −→n = −∇Φ(2)

I · −→n + −̇→
X

(2)

1 · −→n −
[−→
A

(1) ∧
(−̇→

X
(1)

−∇Φ(1)

)]
· −→n −

(−→
X

(1)∇
)
∇Φ(1) · −→n (28)

with −→A (1)
the angular motion.

In the right-hand side −→X (2)

1 designates the second-order motion that results from the first-order angular
motion. It depends on the way the angular motion is defined (Euler angles, etc.). In the end it induces
second-order loads that are of order (ω1 − ω2)2, a priori negligible. Hence we discard this term.



Finally, restricting ourselves to components at the difference frequency ω1 − ω2, the body boundary
condition for ϕ

(2)
D is taken as

∇ϕ
(2)
D · −→n = −∇ϕ

(2)
I · −→n

−1
2

[−→a 1 ∧ (i ω2
−→x ∗2 −∇ϕ∗2) +−→a ∗2 ∧ (−i ω1

−→x 1 −∇ϕ1)] · −→n

−1
2

[(−→x 1∇)∇ϕ∗2 + (−→x ∗2∇)∇ϕ1)] · −→n

= −∇ϕ
(2)
I · −→n + r(2) (29)

Free surface boundary condition It takes the form:

g ϕ
(2)
Dz − (ω1 − ω2)2 ϕ

(2)
D = s(2) = s

(2)
1 + s

(2)
2 (30)

where

s
(2)
1 = i (ω1 − ω2) (∇ϕ1 ∇ϕ∗2 −∇ϕI1 ∇ϕ∗I2) (31)

s
(2)
2 =

1
2 g

{−i ω1 ϕ1

(−ω2
2 ϕ∗2z + g ϕ∗2zz

)
+ i ω2 ϕ∗2

(−ω2
1 ϕ1z + g ϕ1zz

)}

− 1
2 g

{−i ω1 ϕI1

(−ω2
2 ϕ∗I2z + g ϕ∗I2zz

)
+ i ω2 ϕ∗I2

(−ω2
1 ϕI1z + g ϕI1zz

)}
(32)

Induced loads They take the form:

−→
f

(2)

2D = −i ρ (ω1 − ω2)
∫ ∫

S

ϕ
(2)
D
−→n dS (33)

This expression is transformed via Haskind’s theorem (Molin 1979). For instance we consider the x-
component, meaning we want to calculate

I1 =
∫ ∫

S

ϕ
(2)
D n1 dS (34)

We introduce the linear radiation potential ψ1 in x, at the frequency ω1−ω2. If there are several bodies,
ψ1 should satisfy homogeneous Neumann conditions on the neighboring hulls and supplementary integrals
over these hulls will result. In the following, for the sake of simplicity, we assume that we have only one
body. The integral I1 is transformed as

I1 =
∫ ∫

S

ϕ
(2)
D ∇ψ1 · −→n dS =

∫ ∫

S

ψ1 ∇ϕ
(2)
D · −→n dS −

∫ ∫

Fe

(
ψ1 ϕ

(2)
Dz − ϕ

(2)
D ψ1z

)
dS (35)

=
∫ ∫

S

ψ1

(
−∇ϕ

(2)
I · −→n + r(2)

)
dS +

1
g

∫ ∫

Fe

s(2) ψ1 dS (36)

with Fe the outer free surface.
Therefore −→f (2)

2D splits into three components:

−→
f

(2)

2D1 = i ρ (ω1 − ω2)
∫ ∫

S

∇ϕ
(2)
I · −→n

(
ψ1

ψ2

)
dS (37)

−→
f

(2)

2D2 = −i ρ (ω1 − ω2)
∫ ∫

S

r(2)

(
ψ1

ψ2

)
dS (38)

−→
f

(2)

2D3 = −i ρ
ω1 − ω2

g

∫ ∫

Fe

s(2)

(
ψ1

ψ2

)
dS (39)

and similarly for the yaw moment with ψ1, ψ2 replaced with ψ6.

The calculation of −→f (2)

2D1 presents no difficulty. The calculations of −→f (2)

2D2 and −→f (2)

2D3 are addressed in
the following two paragraphs.



Body surface integral The numerical difficulty is mostly associated with the evaluation of the double
space derivatives that appear in r(2) (equation (29)). They can be reduced in the manner suggested by
Chen (1988) (see also Hung 1988).

Free surface integral We want to compute

−→
f

(2)

2D3 = −i ρ
ω1 − ω2

g

∫ ∫

Fe

s(2)

(
ψ1

ψ2

)
dS (40)

In the sum frequency case, this free surface integral provides the dominant contribution to the second-
order loads and the integration domain must extend very far away from the body (see for instance Molin
& Marion 1985). In the difference frequency case, it is often argued that it is negligible or of higher order
than ω1−ω2 (Chen 1994). As can be seen in equation (31), s

(2)
1 is of order ω1−ω2, hence the associated

loads are of order (ω1 − ω2)2. As for s
(2)
2 it is zero identically in deep water if the first-order potentials

contain only propagative modes (in exp(kjz)). In the general case there will be evanescent modes in the
immediate vicinity of the hull (except in the case of fixed wall-sided bodies), and after some distance
the z dependence of the perturbation parts of ϕ1 and ϕ2 (be ϕP1 and ϕP2) will be cosh k1(z + h) and
cosh k2(z + h).

The term s
(2)
2 will then take the form:

s
(2)
2 =

1
2 g

{
−i ω1 ϕ1

(
−ω4

2

g
+ g k2

2

)
ϕ∗2 + i ω2 ϕ∗2

(
−ω4

1

g
+ g k2

1

)
ϕ1

}

− 1
2 g

{
−i ω1 ϕI1

(
−ω4

2

g
+ g k2

2

)
ϕ∗I2 + i ω2 ϕ∗I2

(
−ω4

1

g
+ g k2

1

)
ϕI1

}

s
(2)
2 =

i
2g

(
ω2 k2

1

cosh2 k1h
− ω1 k2

2

cosh2 k2h

)
(ϕ1 ϕ∗2 − ϕI1 ϕ∗I2) (41)

meaning that it is of order ω1 − ω2 after the evanescent modes of ϕP1 and ϕP2 have disappeared.

Here we shall only look for an O(ω1 − ω2) approximation of −→f (2)

2D3. This means that the integration
domain of the free surface integral can be confined to a small domain in the immediate vicinity of the
hull.

Rewriting s
(2)
2 as

s
(2)
2 =

1
2g

[
−i ω1 ϕ1

(
−ω4

2

g
ϕ∗2 − g ϕ∗2xx − g ϕ∗2yy

)
+ i ω2 ϕ∗2

(
−ω4

1

g
ϕ1 − g ϕ1xx − g ϕ1yy

)]

−incident x incident

=
i

2g2
ϕ1 ϕ∗2 ω1 ω2 (ω3

2 − ω3
1) +

i
2

[
ω1 ϕ1 (ϕ∗2xx + ϕ∗2yy)− ω2 ϕ∗2 (ϕ1xx + ϕ1yy)

]

−incident x incident (42)

neglecting the first term, of order ω1−ω2, and separating incident and perturbed parts, we retain finally

s
(2)
2 =

i
2

[
k2
1 ω2 ϕ∗P2 ϕI1 − k2

2 ω1 ϕP1 ϕ∗I2

]

+
i
2

ω1 ϕ1

(
ϕ∗P2xx + ϕ∗P2yy

)− i
2

ω2 ϕ∗2 (ϕP1xx + ϕP1yy) (43)

or
s
(2)
2 = −ω={

k2 ϕI ϕ∗P + ϕ
(
ϕ∗Pxx + ϕ∗Pyy

)}
(44)

since, to our order of approximation, it makes no more sense to distinguish ϕ1 and ϕ2.

Likewise, since the integration is going to take place in a small neighborhood of the hull, the auxiliary
potentials ψi can be replaced by their equivalent at zero frequency (double body Kirchhoff potentials)



which are real.

The component −→f (2)

2D3 is then approximated by

f
(2)
2D3i = i ρ

ω (ω1 − ω2)
g

=
{∫ ∫

Fe

[
k2 ϕI ϕ∗P ψi −∇H(ϕψi) ∇Hϕ∗P

]
dS −

∮

Γ

ϕψi ∇Hϕ∗P · −→n H dΓ

}
(45)

An advantage of this O(ω1−ω2) approximation of the free surface integral is that calculations need not
be carried out for all couples (ωi, ωj), but only for all ωi. However the domain of validity of our proposed
approximation remains to be evaluated over practical cases.

3 Validation

The formulation (12) of the quadratic load −→f (2)

1 has been implemented in the software DiodoreTM of
Principia. As for the components due to the second-order potential, they have been partly implemented,

that is the components −→f (2)

2I (equation (25)) and −→f (2)

2D1 (equation (37)). Still, the main originality of our

paper is the formulation of the quadratic load −→f (2)

1 and this is the component that requires validation.

3.1 Vertical cylinder

First we consider the simple case of a vertical cylinder, standing on the sea-floor. The waterdepth h
is taken equal to 30 times the radius a. For a fixed structure, when pressure integration is applied, the
second-order quadratic force is obtained as

−→
f

(2)

1 =
1
2

ρ

∫ ∫

S

∇ϕ
(1)
1 · ∇ϕ

(1)
2

∗ −→n dS − ρ

2 g
ω1 ω2

∫

Γ

ϕ
(1)
1 ϕ

(1)
2

∗−→n dΓ (46)

This can be evaluated analytically (e.g. see Chen 2001).
According to our Lagally formulation, for a fixed structure, the quadratic force is obtained as

−→
f

(2)

1 = −1
2

ρ

∫ ∫

S

(σ1
−→v ∗2 + σ∗2 −→v 1) dS +

ω1 − ω2

2g
ρ

∫ ∫

Fi

(ω1 ϕ1i ∇ϕ∗2i − ω2 ϕ∗2i ∇ϕ1i) dS (47)

In the following figures 1 through 3 we present the real and imaginary parts of the QTF (normalized by
ρ g a) obtained through (46), as evaluated analytically, and through (47), as implemented in DiodoreTM,
for three different values of k1a (0.2, 0.4 and 0.8), while (k1 − k2)/k1 varies from 0 to 0.5. It can be
checked that the agreement is excellent.
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Fig. 1 – Vertical cylinder. Real and imaginary parts of the normalized QTF in surge, through pressure
integration (curves) and Lagally formulation (symbols). k1a = 0.2
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Fig. 2 – Same as figure 1. k1a = 0.4.
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Fig. 3 – Same as figure 1. k1a = 0.8.

3.2 Floating hemisphere

Next we proceed to the case of a floating hemisphere, free to respond to the waves. Reference values for
the quadratic part of the second-order horizontal force are taken from Table 7 in Kim & Yue (1990). The
waterdepth is equal to 3 times the radius a. Since the sphere is moving a supplementary term appears in
our formulation, as compared to the previous case (see equation (12)). Likewise, in the pressure integral
method, other terms come into play.

Figure 4 shows the meshes used for the hull and the internal free surface. Then figures 5 through 6
show our numerical values for the normalized QTF, as compared to Kim & Yue’s, for different values of
k2 a− k1a. As in the cylinder case, only the quadratic part of the QTF is considered here (the first row
in Kim & Yue’s Table 7). It can be seen that the agreement between both sets of values is quite good.

3.3 FPSO

To conclude we consider the FPSO studied by Lee & Newman (2004) (see also the WAMIT User
Manual, 6-21, http://www.wamit.com/manual.html). This FPSO is composed of three portions: ”(1) an
elliptical bow with a flat horizontal bottom, vertical sides, and semi-elliptical waterlines, (2) a rectangular
mid-body with a flat horizontal bottom, vertical sides and constant beam, and (3) a prismatic stern with
rectangular sections”. The total length is 300 m, the beam 50 m and the draft 25 m. The lengths of the
three portions are, respectively, 50, 150 and 100 m, while the reduced beam and draft at the stern are 30
and 15 m.



Fig. 4 – Floating hemisphere. Discretizations of the hull and internal free surface.
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Fig. 5 – Floating hemisphere. Normalized drift force vs k a. Symbols: Kim & Yue (1990).
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Fig. 6 – Floating hemisphere. Normalized QTF for k2 a− k a = 0.2. Symbols: Kim & Yue (1990).

The FPSO is considered held fixed in infinite waterdepth and beam waves. The mesh as used in
DiodoreTM calculations is shown in figure 8. Figure 9 shows our results, still for the quadratic part of
the QTF, as compared to Lee & Newman’s (taken from their figure 7-b). Again a good agreement is
observed.



Freely floating hemisphere (h/a=3)

 Results comparisons DIOQTF / Kim&Yue 

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

ka

f1
(²

)/
(r

h
o

*g
*a

*A
jA

l*
)

Fig. 7 – Floating hemisphere. Normalized QTF for k2 a− k a = 0.4. Symbols: Kim & Yue (1990).

Fig. 8 – FPSO. Hull mesh.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,2 0,4 0,6 0,8

w

F
q

/(
0

.5
*r

h
o

*g
*L

) dw=0

dw=0.05

dw=0.1

dw=0.15

dw=0.2

Newman-Lee (dw=0)

Newman-Lee (dw=0.05)

Newman-Lee (dw=0.1)

Newman-Lee (dw=0.15)

Newman-Lee (dw=0.2)

Fig. 9 – FPSO. Quadratic force in sway.



4 Concluding remarks

We have proposed a new formulation of the quadratic part of the second-order slowly-varying drift
force, based on the Lagally theorem. Its main advantage over the pressure integration method is better
convergence properties, for instance when the hull has sharp edges (Ledoux et al. 2006). It is easier to
implement than the middle-field method proposed by Chen (2007) or Lee (2007). However it is restricted
to the horizontal components of the QTFs (except for fully submerged bodies).

We are presently working on the coding of the components −→f (2)

2D2 and −→f (2)

2D3. Results should be avai-
lable soon.

Through our formulation it can be seen that, apart from the first term in equation (12) that involves
the source densities σ1 and σ2, all other terms are of order ω1 − ω2 and purely imaginary in the limit
ω2 → ω1. This feature has also been pointed out and exploited by Chen & Duan (2007).

It suggests the following refinement of the so-called Newman’s approximation, based on

QTF (ωi,ωj) '
√

fd(ωi) fd(ωj) sign(fd)− i (ωi − ωj)
√

α(ωi) α(ωj) sign(α) (48)

with fd(ωi) = f (2)(ωi,ωi)/2 the normalized drift force and α(ωi) a real quantity (the sign of which should
remain the same when ωi varies). In Molin & Chen (2002) it is shown that, in the case of a vertical
cylinder, the geometric mean provides an excellent approximation of the real part of the QTF. All other
terms but the first one in equation (12) can be put in the form i (ωi − ωj) α(ωi) for ωj → ωi (except,
maybe, depending on the waterdepth, the terms f

(2)
2I and f

(2)
2D1 which involve the second-order incident

potential, but which present no computational difficulty).
In irregular waves the second-order slowly varying drift force would then take the form

F (2)(t) =
∑

i

∑

j

Ai Aj <
{[√

fd(ωi) fd(ωj) sign(fd)

−i (ωi − ωj)
√

α(ωi) α(ωj) sign(α)
]

e−i (ωi−ωj)t+i (θi−θj)

}

=
∑

i

∑

j

Ai Aj

√
fd(ωi) fd(ωj) cos [(ωi − ωj)t− θi + θj ] sign(fd)

+
d
dt





∑

i

∑

j

Ai Aj

√
α(ωi) α(ωj) cos [(ωi − ωj)t− θi + θj ]



 sign(α)

=





[∑

i

Ai

√
|fd(ωi)| cos(ωit− θi)

]2

+

[∑

i

Ai

√
|fd(ωi)| sin(ωit− θi)

]2


 sign(fd)

+
d
dt





[∑

i

Ai

√
|α(ωi)| cos(ωit− θi)

]2

+

[∑

i

Ai

√
|α(ωi)| sin(ωit− θi)

]2


 sign(α)

In this way F (2) is obtained as a combination of single summations squared, in place of a double
summation, offering appreciable gains in rapidity. This would hold under the condition that α keeps the
same sign when the wave frequency covers the wave spectrum.
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Ph.D. thesis, Université de Nantes (in French).
Chen X.B. 1994 Approximation on the quadratic transfer function of low-frequency loads, Proc. BOSS’94,
289–302.
Chen X.B. 2001 Second-order low-frequency loads on a standing cylinder, Bureau Veritas technical note.
Chen X.B. 2007 Middle-field formulation for the computation of wave drift forces, under publication in
J. Eng. Math..
Chen X.B. & Duan W.Y. 2007 Formulations of low-frequency QTF by O(∆ω) approximation, Proc.
22nd Int. Workshop on Water Waves and Floating Bodies, Plitvice.
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