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Résumé 

Cette étude porte sur le problème fondamental qui consiste à déterminer l’écoulement potentiel correspondant à 
un écoulement donné à la surface frontière du domaine de l’écoulement. Une nouvelle représentation du potentiel 
est obtenue. Cette représentation du potentiel généralise deux représentations connues : une représentation 
classique qui exprime le potentiel Á au moyen d’une fonction de Green G et de son gradient r G, et la 
représentation faiblement singulière obtenue dans [1], qui définit Á au moyen de G et d’une fonction de Green 
vectorielle G comparable à G (en particulier, la fonction G n’est pas plus singulière que G). En fait, ces deux 
représentations sont complémentaires et correspondent à des cas particuliers de la représentation généralisée 
obtenue dans cette étude. La représentation généralisée du potentiel est appliquée ` a la diffraction-radiation par un 
navire avançant dans une houle régulière (et les cas particuliers d’un écoulement permanent autour d’un navire 
avançant en eau calme et de la diffraction-radiation sans vitesse d’avance), ainsi qu’aux cas limites correspondant 
à une gravité nulle ou infinie. Pour la diffraction-radiation avec vitesse d’avance, on considère deux fonctions de 
Green associées à la condition de surface libre linéarisée : la fonction de Green usuelle, qui satisfait la condition à 
la surface libre partout, et la fonction de Green plus simple obtenue dans [2] . 

Summary 
The fundamental problem of determining the potential flow that corresponds to a given flow at the boundary 
surface of the flow domain is considered. A generalized boundary-integral representation of the potential is given. 
This potential representation is an extension of two alternative basic representations of the potential : a classical 
representation, which defines a velocity potential Á in terms of a Green function G and its gradient r G, and the 
alternative weakly-singular potential representation given in [1], which defines Á in terms of G and a related 
vector Green function G that is comparable to G (in particular, G is no more singular than G). In fact, these two 
alternative basic potential representations are complementary, and are special cases of the generalized 
representation given in the present study. The generalized potential representation is applied to free-surface flows 
in the infinite-gravity and zero-gravity limits, and wave diffraction-radiation by a ship advancing in time-
harmonic waves (and the special cases corresponding to diffraction-radiation without forward speed and steady 
flow about a ship advancing in calm water). For wave diffraction-radiation with forward speed, two alternative 
Green functions associated with the linearized free-surface boundary condition are considered : the usual Green 
function, which satisfies the free-surface condition everywhere, and the simpler farfield Green function given in 
[2]. 
 
[1] Weakly-singular boundary-integral representations of free-surface flows about ships or offshore structures, 
Journal of Ship Research, 2004, 48:31-44 
[2] A simple Green function for diffraction-radiation of time-harmonic waves with forward speed, Ship 
Technology Re-search (Schiffstechnik), 2004, 51:35-52. 

 



1. Introduction

Wave diffraction-radiation by a ship advancing through regular (time-harmonic) waves at the free
surface of a large body of water of uniform depth D is considered within the framework of a 3D
potential-flow frequency-domain analysis. This basic core issue is one of the most classical and important
problem in ship hydrodynamics. Indeed, 3D wave diffraction-radiation with forward speed (in deep
water or in finite water depth) is relevant to hydrodynamic hull-form design and optimization (notably
of fast and unconventional vessels and at early stages), viscous ship hydrodynamics (via coupling with
RANSE nearfield calculation methods), and ship motions in large waves (added-mass and wave-damping
coefficients can be used for effective nonlinear time-domain simulations). Accordingly, the problem has
been extensively considered in the literature, with limited success however due to major difficulties
related to forward speed effects. This literature, the basic mathematical and numerical difficulties of
the problem, and its considerable practical importance are reviewed in Noblesse and Yang (2004a,b,c).

The z axis is vertical and points upward, and the mean free surface is taken as the plane z=0 . For
steady and time-harmonic flow about a ship advancing in calm water or in waves, the x axis is chosen
along the path of the ship and points toward the bow. Coordinates are nondimensional with respect
to a reference length L , e.g. the ship length. The fluid velocity is nondimensional with respect to a
reference velocity U , e.g. U =

√
gL (where g is the acceleration of gravity) or U = U (the ship speed),

and the velocity potential φ is nondimensional with respect to the reference potential UL .

Let ΣB be a surface located outside the viscous boundary layer that surrounds the ship hull. The
surface ΣB includes the outer edge of the viscous wake trailing the ship, or a surface outside the viscous
wake. If viscous effects are ignored, ΣB may be taken as the mean wetted ship hull. For a ship equipped
with lifting surfaces, e.g. a sailboat, ΣB also includes the two sides of every vortex sheet behind the
ship hull. For a multihull ship, the hull+wake surface ΣB consists of several component surfaces, which
correspond to the separate hull components of the ship and their wakes.

The flow domain is bounded by the surface

Σ = ΣB ∪ Σ0 ∪ ΣD (1)

where Σ0 is the portion of the mean free-surface plane z = 0 located outside the “body” surface ΣB ,
and ΣD is the sea floor z =−D/L , assumed to be a rigid wall. Let Γ represent the intersection curve
between the surfaces ΣB and Σ0 , i.e. the intersection curve of the body surface ΣB with the free-surface
plane. The unit vector n = (nx, ny, nz ) is normal to the boundary surface Σ and points into the flow
domain. Thus, n = (0 , 0 ,−1) at the free surface Σ0 and n = (0 , 0 , 1) at the sea floor ΣD . The unit
vector t = ( tx, ty,0 ) is tangent to the boundary curve Γ and oriented clockwise (looking down). Finally,
the unit vector nΓ = (−ty, tx, 0) is normal to the curve Γ in the free-surface plane z=0 and points into
the flow domain (like the unit vector n normal to the boundary surface Σ).

Let x̃ = ( x̃, ỹ , z̃ ) and x = (x, y , z) stand for a field point and a singularity point, respectively,
associated with a Green function G( x̃ ;x ). The field point x̃ lies inside the flow domain, and the
singularity point x is located on the boundary surface Σ . Furthermore, X and Y are defined as

X = x̃ − x Y = ỹ − y (2)

Hereafter, φ̃ stands for the velocity potential at a field point x̃ , and φ and ∇φ represent the potential
and the velocity at a boundary point x . Furthermore, ∇̃ and ∇ stand for the differential operators
∇̃ = (∂

x̃
, ∂

ỹ
, ∂

z̃
) and ∇= (∂x , ∂y , ∂z ).

2. Classical potential-flow representation

The potential φ̃ = φ(x̃) at a field point x̃ within a flow domain bounded by a closed boundary surface
Σ is defined in terms of the boundary values of the potential φ and its normal derivative n ·∇φ by the
classical boundary-integral representation

φ̃ =

∫

Σ

dA (G n ·∇φ − φ n ·∇G ) (3)

where dA stands for the differential element of area at a point x of the boundary surface Σ . The
representation (3) defines the potential in terms of boundary distributions of sources (with strength



n ·∇φ ) and normal dipoles (strength φ ), and involves a Green function G and the first derivatives of
G . Differentiation of the potential representation (3) yields

∇̃φ̃ =

∫

Σ

dA [(n ·∇φ)∇̃G − φ ∇̃(n ·∇G) ] (4)

This classical velocity representation involves second derivatives of G . The potential representation (3)
holds for a field point x̃ inside the flow domain, strictly outside the boundary surface Σ . This restriction
stems from the well-known property that the potential defined by the dipole distribution in (3) is not

continuous at the surface Σ . Indeed, φ̃ on the left of (3) becomes φ̃/2 at a point x̃ of the boundary
surface Σ (if Σ is smooth at x̃ ).

3. Weakly-singular potential-flow representation

An alternative boundary-integral representation is given in Noblesse and Yang (2004a). This al-
ternative representation is obtained using a vector Green function G associated with the scalar Green
function G in (3) via the relation

∇× G = ∇G (5)

The relation (5) implies that G is no more singular than G . The relation (5) between a scalar Green
function G and a vector Green function G is analogous to the relation ∇×Ψ = ∇φ between a velocity
potential φ and a stream function Ψ . The relation (5) does not define a unique vector Green function
G ; indeed, if G satisfies (5), G + ∇H also satisfies (5) for an an arbitrary scalar function H .

The identity ∇× (φG ) = φ∇× G + ∇φ × G and (5) yield

[∇× (φG ) ] · n = φ∇G · n + (∇φ ×G) · n

Integration of this identity over a closed boundary surface Σ then yields

−
∫

Σ

dA φ n ·∇G =

∫

Σ

dA (n×∇φ) · G (6)

The foregoing identities, with G taken as ∇H , yield

0 =

∫

Σ

dA (n×∇φ) · ∇H (7)

The field point x̃ in (6) is inside the flow domain, strictly outside the boundary surface Σ . The
transformation (6) expresses a surface integral involving the potential φ and the derivative ∇G of a
Green function G as an integral that involves ∇φ and the vector Green function G , which is comparable
to G . Thus, the transformation (6) corresponds to an integration by parts (φ ,∇G) −→ (∇φ, G) .

Substitution of the transformation (6) into the classical potential representation (3) yields

φ̃ =

∫

Σ

dA [G n ·∇φ + G · (n×∇φ) ] (8)

The identity (7) shows that expression (8) defines a unique potential φ̃ , even though the relation (5)
does not define a unique vector Green function G . The alternative potential representation (8) involves
a Green function G and the related vector Green function G , which is comparable to (in particular, is
no more singular than) G as already noted. Thus the potential representation (8) is weakly singular in

comparison to the classical representation (3), which involves G and ∇G . The potential φ̃ defined by
the weakly-singular potential representation (8) is continuous at the boundary surface Σ , whereas the

classical boundary-integral representation (3) does not define a potential φ̃ that is continuous at Σ .

The well-known velocity representation

∇̃φ̃ =

∫

Σ

dA [ (n ·∇φ)∇̃G + (n×∇φ) × ∇̃G ] (9)

can be obtained via judicious differentiation of the weakly-singular potential representation (8), in
the manner shown in Noblesse and Yang (2002). The velocity representation (9) only involves first



derivatives of G and thus is weakly singular in comparison to the velocity representation (4), which
involves second derivatives of G . The velocity representation (9) is applied to wave diffraction-radiation
of time-harmonic waves by a ship or an offshore structure in Noblesse (2001) . A drawback of the
velocity representation (9) and the related representations given in Noblesse (2001) is that they do not
necessarily define a potential flow; see e.g. Hunt (1980). Indeed, the velocity representation (9) is not
identical to the gradient of the potential representation (8), as shown in Noblesse and Yang (2002).

A specific vector Green function that satisfies (5) is

G = (G z
y ,−G z

x ,0) (10)

Here, a subscript or superscript attached to G indicates differentiation or integration, respectively. The
vector Green function (10) is used here, as in Noblesse and Yang (2004a). Alternative vector Green
functions can be used; e.g. the vector Green functions G = (0 , G x

z ,−G x
y ) and G = (−G y

z , 0 , Gy
x ) are

considered in Noblesse and Yang (2002).

4. Generalized potential representation

The weakly-singular boundary-integral representation (8) and the classical representation (3) can be
regarded as special cases of a more general family of potential representations, as now shown. The basic
potential representation (3) can be expressed as

φ̃ =

∫

Σ

dA [ G n ·∇φ − (1−P )φ n ·∇G −P φ n ·∇G ] (11a)

where P = P (x ; x̃) stands for a function of x and x̃ . The transformation (6), with φ replaced by Pφ ,
yields

−
∫

Σ

dAP φ n ·∇G =

∫

Σ

dA G · [n×∇(P φ) ] (11b)

The potential representation (11a) and the transformation (11b) yield

φ̃ =

∫

Σ

dA [ G n ·∇φ − (1−P )φ n ·∇G +P G · (n×∇φ) + φ G · (n×∇P ) ] (12)

The potential representation (12) generalizes the classical representation (3) and the weakly-singular
representation (8), which correspond to the special cases P = 0 and P = 1 , respectively.

5. Potential representations for free-space Green function

The potential representation (12) is now considered for the simplest case when the Green function
is chosen as the fundamental free-space Green function, defined as 4πG = −1/r with

r =
√

X ·X X = (X, Y, Z ) Z = z̃ − z (13)

X and Y are given by (2). Expressions (12) and (13) yield

φ̃ =
−1

4π

∫

Σ

dA
(

n ·∇φ

r
− φ

1−P

r2

X ·n
r

+P S · (n×∇φ) + φ S · (n×∇P )

)
(14)

where S satisfies the relation ∇× S = ∇(1/r) and is chosen as S = [(1/r)z
y ,−(1/r)z

x , 0 ] in accordance
with (10). The function (1/r)z and its derivatives with respect to x and y are given by

(1/r)z = − sign(Z) ln( r + |Z | )

{
(1/r)z

x

(1/r)z
y

}
=

sign(Z)

r + |Z |

{
X/r

Y/r

}
(15)

Thus, we have S = s/r where s is given by

s =
sign(d z)

1+ |d z | (d y,−dx, 0) (dx, d y, d z ) = d =
(x − x̃ , y − ỹ , z − z̃ )

r
(16)



This definition of d yields d = −X/r , ∇r = d and ∇(1/r) = −d/r2. Thus, (14) becomes

φ̃ =
−1

4π

∫

Σ

dA
r

(
n ·∇φ + φ

1−P

r
d · n +P s · (n×∇φ) + φ s · (n×∇P )

)
(17)

The potential representation (17) yields

φ̃ =
−1

4π

∫

Σ

dA
r

[n ·∇φ +
φ

r
d · n ] if P = 0 (18a)

φ̃ =
−1

4π

∫

Σ

dA
r

[n ·∇φ + s · (n×∇φ) ] if P = 1 (18b)

The dipole term in the classical potential representation (18a) is O(1/r2) . This term decays rapidly in
the farfield but is strongly singular in the nearfield. The corresponding term in the alternative potential
representation (18b) is O(1/r) . This term is weakly singular in the nearfield but decays slowly in the
farfield. Thus, the alternative potential representations (18a) and (18b) are best suited in the farfield
and the nearfield, respectively, and — in that sense — are complementary.

If the function P in (17) vanishes in the farfield and tends to 1 in the nearfield sufficiently rapidly,
the integrand of (17) is asymptotically equivalent to the integrands of (18a) and (18b) in the farfield
and the nearfield, respectively. E.g., consider the function

P =1/(1+ r3/` 3 ) (19a)

where the positive real number ` corresponds to a transition length scale. This function yields

1−P = r3/(` 3 + r3) ∇P = 3P r X/(` 3 + r3) (19b)

Expressions (17) and (19) yield

φ̃ =
−1

4π

∫

Σ

dA
r

[
n ·∇φ +

r2d · n
` 3 + r3

φ +
s · (n×∇φ)

1+ r3/` 3
+

3 r2φ

` 3 + r3

s · (d × n)

1+ r3/` 3

]
(20)

where s and d are given by (16). The potential representation (20) is identical to the representations
(18a) and (18b) in the limits ` = 0 and ` = ∞ , respectively. The integrand of (20) is identical to the
integrands of (18a) and (18b) in the farfield and nearfield limits r/` → ∞ and r/` → 0 , respectively.

6. Application to free-surface flows about ships or offshore structures

The boundary surface Σ and the Green function G (and related vector Green function G) in the
potential representation (12) are generic. This generic representation is now applied to free-surface
flows, for which Σ is defined by (1). The unit vector n normal to Σ is given by n = (0 , 0 ,−1) and
n = (0 , 0 ,1) at the free surface Σ0 and the sea floor ΣD , respectively. Thus, (12) and (10) yield

φ̃ = φ̃B + φ̃0 + φ̃D with (21a)

φ̃B =

∫

ΣB

dA [Gn ·∇φ − (1−P ) φ n ·∇G +P G · (n×∇φ) + φ G · (n×∇P ) ] (21b)

φ̃0 =

∫

Σ0

dx dy [ (P φ)x G z
x + (P φ)y G z

y + (1−P )φGz − Gφz ] (21c)

φ̃D = −
∫

ΣD

dx dy [ (P φ)x G z
x + (P φ)y G z

y + (1−P )φ Gz ] (21d)

The boundary condition φz = 0 at the rigid sea floor ΣD was used in (21d). The potential representation
(21) is considered further on for diffraction-radiation by a ship advancing in time-harmonic waves.

7. The infinite-gravity and zero-gravity limits

Free-surface flows in the infinite-gravity and zero-gravity limits, associated with the boundary con-
ditions φz = 0 (infinite gravity) and φ = 0 (zero gravity) at the plane z = 0 , are first considered. More
generally, the nonhomogeneous problems corresponding to a specified vertical velocity φz or potential φ
at the plane z = 0 are considered. In the infinite-gravity limit, the Green function G is chosen to satisfy
the boundary condition Gz = 0 (and consequently also G z = 0 as verified further on) at z = 0 . The



free-surface component (21c) therefore becomes

φ̃0 = −
∫

Σ0

dx dy Gφz (22a)

This expression does not involve the function P . In the zero-gravity limit, the Green function G is
chosen to satisfy the boundary condition G = 0 at z = 0 , and the free-surface component (21c) becomes

φ̃0 =

∫

Σ0

dx dy [ (1−P )φ Gz + (P φ)x G z
x + (P φ)y G z

y ] (22b)

The Green function G may be chosen as 4πG∞ = −1/r − 1/r∗ for the infinite-gravity limit and as
4πG 0 = −1/r + 1/r∗ for the zero-gravity limit. Here, r is given by (13) and r∗ is defined as

r∗ =
√

X∗ ·X∗ X∗ = (X,Y,Z∗ ) Z∗ = z̃ + z (23)

X and Y are given by (2). The potentials 1/r and 1/r∗ correspond to an elementary Rankine sink at a
point x = (x , y , z) and at the mirror image (x, y ,−z) of x with respect to the free-surface plane z = 0 ,
respectively. The function (1/r∗)

z and its derivatives with respect to x and y are given by

(1/r∗)
z = sign(Z∗) ln( r∗ + |Z∗ | )

{
(1/r∗)

z
x

(1/r∗)
z
y

}
=

− sign(Z∗)

r∗ + |Z∗ |

{
X/r∗

Y/r∗

}
(24)

with sign(Z∗) = −1 and |Z∗ | = −Z∗ in the lower half space z ≤ 0 and z̃ ≤ 0 . At the plane z = 0 , (15)
and (24) yield (1/r)z = ln( r − z̃ ) and (1/r∗)

z = − ln( r − z̃ ) . Thus, the Green function G∞ satisfies
the boundary condition (G∞)z = 0 at z = 0 , as previously assumed.

In the infinite-gravity limit, (22a) with G = G∞ yields the free-surface component

φ̃0 =
1

2π

∫

Σ0

dx dy

r
φz (25a)

Similarly, (22b) with G = G 0, (15) and (24) yield

φ̃0 =
−1

2π

∫

Σ0

dx dy

r

(
1−P

r

z̃ φ

r
+

dx(P φ)x + d y (P φ)y

1− z̃/r

)
(25b)

in the zero-gravity limit. In (25), r =
√

X2+Y 2+ z̃ 2 . The body-surface component (21b) becomes

φ̃B =
−1

4π

∫

ΣB

dA
(

a

r
± a∗

r∗

)
(26a)

where the upper/lower signs + and − in ± correspond to the infinite-gravity and zero-gravity limits,
respectively, and the functions a and a∗ are defined as

a = n ·∇φ + φ
1−P

r
d · n +P s · (n×∇φ) + φ s · (n×∇P ) (26b)

a∗ = n ·∇φ + φ
1−P

r∗
d∗ · n +P s∗ · (n×∇φ) + φ s∗ · (n×∇P ) (26c)

Furthermore, s and d are given by (16), and s∗ and d∗ are defined as

s∗ =
sign(d z

∗ )

1+ |d z
∗ |

(d y
∗ ,−dx

∗ , 0) (dx
∗ , d y

∗ , d z
∗ ) = d∗ =

(x − x̃ , y − ỹ , z + z̃ )

r∗
(27)

This definition of d∗ yields ∇r∗ = d∗ and ∇(1/r∗) = −d∗/r2
∗ .

Expressions (25b) and (26) yield

φ̃0 =
−z̃

2π

∫

Σ0

dx dy

r

φ

r2
(28a)

φ̃B =
−1

4π

∫

ΣB

dA
[(

1

r
± 1

r∗

)
n ·∇φ +

(
d · n
r2

± d∗ · n
r2
∗

)
φ

]
(28b)



in the special case P = 0 , and

φ̃0 =
−1

2π

∫

Σ0

dx dy

r

dxφx + d yφy

1− z̃/r
(29a)

φ̃B =
−1

4π

∫

ΣB

dA
[(

1

r
± 1

r∗

)
n ·∇φ +

(
s

r
± s∗

r∗

)
· (n×∇φ)

]
(29b)

in the special case P = 1 . The integrand of (28a) and the dipole term in (28b) decay rapidly as r → ∞
but are strongly singular as r → 0 . The corresponding terms in (29a) and (29b) are weakly singular as
r → 0 but decay slowly as r → ∞ .

Substitution of (19) into (25b) and (26) yields

φ̃0 =
−1

2π

∫

Σ0

dx dy

r

[
r z̃ φ

` 3 + r3
+

(
d xφx + d yφy

1− z̃/r
− 3 r2φ

1+ z̃/r

` 3 + r3

)
1

1+ r3/` 3

]
(30a)

φ̃B =
−1

4π

∫

ΣB

dA (30b)

[(
1

r
± 1

r∗

)
n ·∇φ +

(
d · n
r2

± d∗ · n
r2
∗

)
r3φ

` 3 + r3
+

s/r ± s∗/r∗
1+ r3/` 3

·
(
n×∇φ +

3 r2d×n

` 3 + r3
φ

)]

Expressions (30) are identical to (28) and (29) in the limits ` = 0 and ` = ∞ , respectively. The
integrands of (30a) and (30b) are identical to the corresponding integrands in (28) and (29) in the

farfield and nearfield limits r/` → ∞ and r/` → 0 , respectively. The contribution φ̃D of the sea floor
ΣD in (21) is easily obtained by taking the unit normal vector n in (30b) as n = (0 , 0 , 1) . This sea-floor
component can be rendered null if a more complicated Green function that satisfies the condition Gz = 0
at the sea floor (in addition to the condition Gz = 0 or G = 0 at the free surface) is used.

8. Free-surface contribution for wave diffraction-radiation with forward speed

Diffraction-radiation by a ship advancing (at speed U ) through regular waves (with frequency ω) is
now considered. Define the nondimensional wave frequency f , the Froude number F , and τ̂ as

f = ω
√

L/g F = U/
√

gL τ̂ = 2fF = 2ω U/g (31)

Furthermore, define πφ and πG as

πφ = φz + F 2 φxx − f2φ + iτ̂ φx (32a)

πG = Gz + F 2 Gxx − f2 G − i τ̂ Gx (32b)

The integrand of the free-surface integral (21c) can be expressed as

(P φ)x (πG)zz
x + (P φ)y (πG)zz

y + (1−P )φπG− Gπφ + f2af + i τ̂ aτ + F 2aF

where πG and πφ are given by (32) and af, aτ, aF are defined as

af = (P φ G zz
x )x + (P φG zz

y )y

aτ = [(P φ)y G zz
y ]x − [(P φ)x G zz

y ]y + [(1−P )φG ]x

aF = (φx G)x − [(P φ)y G zz
xy ]x + [(P φ)x G zz

xy ]y − [(1−P )φ Gx ]x

Stokes’ theorem can then be used to express the free-surface integral (21c) as

φ̃0 =

∫

Σ0

dxdy [(πG)zz
x (P φ)x + (πG)zz

y (P φ)y + πG(1−P )φ −Gπφ ]

+

∫

Γ

dL [f2 ( tyG zz
x − txG zz

y )P φ − (F 2Gx− iτ̂ G )zz
y t ·∇(P φ)

− (F 2Gx− i τ̂ G)(1−P ) tyφ + F 2 G tyφx ] (33)

In the line integral around the curve Γ, t ·∇φ is the velocity along the unit vector t = ( tx, ty, 0 ) tangent
to Γ (oriented clockwise; looking down), and the velocity component φx can be expressed as

φx = tx t ·∇φ − ty nΓ ·∇φ (34)

with nΓ = (−ty, tx, 0) a unit vector normal to the curve Γ in the free-surface plane z = 0 .



9. Potential representation for wave diffraction-radiation with forward speed

Substitution of (33) into (21) yields the potential representation

φ̃ =

∫

ΣB

dA(G n ·∇φ +AB ) +

∫

Σ0

dxdy (A0 − Gπφ ) +

∫

Γ

dL(AΓ + F 2 G tyφx) −
∫

ΣD

dxdyAD (35)

where the amplitude functions AB , A0 ,AΓ and AD are defined as

AB = G · [n×∇(Pφ)] − (1−P )φ n ·∇G (36a)

A0 = (πG)zz
x (P φ)x + (πG)zz

y (P φ)y + πG(1−P )φ (36b)

AΓ = f2 ( tyG zz
x − txG zz

y )P φ − (F 2Gx− i τ̂ G)zz
y t ·∇(P φ)

− (F 2Gx− iτ̂ G )(1−P ) tyφ (36c)

AD = G z
x (P φ)x + G z

y (P φ)y + Gz (1−P )φ (36d)

The function πφ defined by (32a) is null if the potential φ is assumed to satisfy the usual linearized
free-surface boundary condition. However, πφ is not null if a pressure distribution is applied at the
free surface, as for a surface-effect ship, or if nearfield free-surface effects are taken into account, e.g.
for linearization about a base flow (double body or steady flow) that differs from the uniform stream
opposing the ship speed (for which πφ = 0). In any case, the pressure/flux distribution πφ at the free
surface Σ0 in (35) vanishes in the farfield. If the Green function G in the potential representation (35)
is chosen as the usual Green function associated with the linearized free-surface boundary condition,
the function πG given by (32b) is null. Alternatively, if a Green function that satisfies the free-surface
condition πG = 0 in the farfield (but not in the nearfield) is used, the function πG and the related
amplitude function A0 given by (36b) vanish in the farfield, like the function πφ. In either case, free-
surface integration in (35) is only required over a finite nearfield region of the unbounded free surface Σ0 .

10. Two Green functions and related potential representations

Two alternative Green functions are defined in Noblesse and Yang (2004b) and considered here.
These Green functions can be expressed as

4πG = GR + GF 4πG = GR + iGW (37)

The Green function GR + GF satisfies the linear free-surface boundary condition πG = 0 everywhere,
i.e. in both the farfield — where the linear free-surface condition πG = 0 is valid — and the nearfield,
where this linear condition is only an approximation. The Green function GR+ iGW satisfies the linear
free-surface condition πG = 0 accurately in the farfield but only approximately in the nearfield. The
component GR in (37) stands for a local-flow component given by elementary free-space Rankine sources.
The component GF represents a Fourier component defined by a two-dimensional Fourier superposition
of elementary waves, given further on in this study for deep water. Finally, the component GW in (37)
stands for a wave component defined by GW = W+− W−− W i, where the three components W± and
W i represent distinct wave systems generated by a pulsating source advancing at constant speed. Each
of these three wave components is defined by a one-dimensional Fourier superposition of elementary
waves, given in Noblesse and Yang (2004b) for deep water.

Substitution of the alternative decompositions (37) of the Green function into the potential repre-
sentation (35) yields the alternative representations

4π φ̃ = φ̃R+ φ̃F 4π φ̃ = φ̃R+ i φ̃W (38)

for the potential φ̃ at a field point x̃ within the flow domain. The potentials φ̃R, φ̃F and φ̃W in (38)
are defined by the basic potential representation (3), with G taken as GR,GF and GW, respectively.
These basic potential representations can be modified using the transformation (11b), as in (12), (21)
and (35). Each one of the three components GR,GF and GW in the alternative Green functions (37)
satisfies the Laplace equation. The transformation (11b) can therefore be applied separately to the

local Rankine component φ̃R, the Fourier component φ̃F and the wave component φ̃W in the alternative
decompositions (38), and these three components of the potential φ̃ are given by (35), with G replaced
by GR,GF or GW . These three potentials are successively considered below.



11. Rankine potential φ̃R

Thus, the Rankine component φ̃R in (38) is defined by (35) and (36) as

φ̃R =

∫

ΣB

dA(GR n ·∇φ +AR
B ) +

∫

Σ0

dxdy (AR
0 −GR πφ) +

∫

Γ

dL(AR
Γ + F 2 GRtyφx) −

∫

ΣD

dxdyAR
D (39)

where AR
B = GR · [n×∇(Pφ) ] − (1−P ) φ n ·∇GR

AR
D = (GR)z

x (P φ)x + (GR)z
y (P φ)y + GR

z (1−P )φ

AR
0 = (πR)zz

x (P φ)x + (πR )zz
y (P φ)y + πR(1−P )φ (40)

AR
Γ = f2 [ ty(GR)zz

x − tx(GR)zz
y ]P φ − (F 2GR

x − i τ̂ GR )zz
y t ·∇(P φ)

−(F 2GR
x − i τ̂ GR )(1−P ) tyφ

with GR = [ (GR)z
y ,−(GR)z

x , 0 ] and πR = GR
z + F 2 GR

xx − f2 GR − i τ̂ GR
x (41)

in accordance with (10) and (32b). Expressions (40) yield

AR
B = −φ n ·∇GR AR

D = GR
z φ AR

0 = πRφ AR
Γ = −(F 2GR

x − i τ̂ GR)tyφ (42a)

in the special case P = 0 , and

AR
B = GR · (n×∇φ) AR

D = (GR)z
x φx + (GR)z

y φy AR
0 = (πR)zz

x φx + (πR)zz
y φy

AR
Γ = f2 [ ty(GR )zz

x − tx(GR)zz
y ]φ − (F 2GR

x − iτ̂ GR)zz
y t ·∇φ (42b)

in the special case P = 1 . Expressions (42a) and (42b) correspond to the classical potential repre-
sentation (3) and the weakly-singular representation (8), respectively. The functions AR

B , AR
D , AR

0 , AR
Γ

defined by (42a) vanish faster in the farfield — but are more singular in the nearfield — than the
functions (42b). Thus, the functions (42a) and (42b) are better suited in the farfield and the nearfield,
respectively.

Substitution of (19) into (40) yields

AR
B =

GR

1+ r3/` 3
·
(
n×∇φ +

3 r n×X

` 3 + r3
φ

)
− r3φ n ·∇GR

` 3 + r3

AR
D =

r3GR
z φ

` 3 + r3
+

(GR)z
x

1+ r3/` 3

(
φx +

3 rXφ

` 3 + r3

)
+

(GR)z
y

1+ r3/` 3

(
φy +

3 rY φ

` 3 + r3

)

AR
0 =

r3πRφ

` 3 + r3
+

(πR)zz
x

1+ r3/` 3

(
φx +

3 rXφ

` 3 + r3

)
+

(πR)zz
y

1+ r3/` 3

(
φy +

3 rY φ

` 3 + r3

)
(43)

AR
Γ = f2φ

ty(GR)zz
x − tx(GR)zz

y

1+ r3/` 3
− (F 2GR

x − i τ̂ GR)
r3 tyφ

` 3 + r3

−
(F 2GR

x − i τ̂ GR )zz
y

1+ r3/` 3

(
t ·∇φ +

3 r t ·X
` 3 + r3

φ

)

Expressions (43) are identical to (42a) and (42b) in the limits ` = 0 and ` = ∞ , and are asymptotically
equivalent to (42a) and (42b) in the farfield r/` → ∞ and the nearfield r/` → 0 , respectively, and thus
are well suited in both the farfield and the nearfield.

12. Fourier potential φ̃F

As already noted, the component GF in (37) stands for a Fourier component defined by a two-
dimensional Fourier superposition of elementary waves. Specifically, in the deep-water limit — now
considered — the Fourier component GF is given by

GF = lim
ε→+0

1

π

∫ ∞

−∞
dβ

∫ ∞

−∞
dα A

eZ∗ k − i ( α X+ β Y )

D + i εD1
(44a)

where X, Y and Z∗ are given by (2) and (23), and the dispersion functions D and D1 and the amplitude
function A are defined as

D = k − (Fα −f)2 D1 = Fα −f A = e−F2k(1− e−k /f2

)D/k − 1 (44b)



The Fourier component φ̃F in (38) is given by (35) and (36) with G taken as GF . The Fourier-Kochin

approach can be used to express the Fourier potential φ̃F as

φ̃F = lim
ε→+0

1

π

∫ ∞

−∞
dβ

∫ ∞

−∞
dα AS

e z̃ k − i ( x̃ α + ỹ β )

D + i εD1
(45a)

Here, (44a), (2) and (23) were used, the dispersion functions D and D1 and the amplitude function A
are given by (44b), and S(α , β ) stands for the spectrum function defined as

S =

∫

ΣB

dA(n ·∇φ + iAF
B ) e k zE −

∫

Σ0

dx dy (πφ− iAF
0

D

k
)E +

∫

Γ

dL(F 2tyφx + iAF
Γ )E (45b)

with E = e i ( α x+ β y ) (45c)

Expressions (35), (36), (10), (32b) and (44b) show that the amplitude functions AF
B , AF

0 , AF
Γ in (45b)

are given by

AF
B =

β

k
[n×∇(P φ)]x− α

k
[n×∇(P φ) ]y − (αnx+βny− i knz )(1−P )φ

AF
0 =

α

k
(P φ)x +

β

k
(P φ)y − i k (1−P )φ (46)

AF
Γ =

f2P φ

k

(
α

k
ty − β

k
tx

)
+

τ̂ −F 2α

k

(
k (1−P ) tyφ + i

β

k
t ·∇(P φ)

)

The amplitude functions (46) become

AF
B = −(αnx+βny − i knz )φ AF

0 = −i k φ AF
Γ = (τ̂ −F 2α) tyφ (47a)

in the special case P = 0 , and

AF
B =

β

k
(n×∇φ)x− α

k
(n×∇φ)y AF

0 =
α

k
φx +

β

k
φy

AF
Γ =

f2φ

k

(
α

k
ty − β

k
tx

)
+ i

β

k

τ̂ −F 2α

k
t ·∇φ (47b)

in the special case P = 1 . Expressions (47a) and (47b) correspond to the classical potential represen-
tation (3) and the weakly-singular representation (8), respectively. Expressions (47) yield

{
AF

B = O(k) AF
0 = O(k) if P = 0

AF
B = O(1) AF

0 = O(1) if P = 1

}

in both the limit k → 0 and the limit k → ∞ . Expressions (47) also yield

AF
Γ =

{
O(1) if P = 0

O(1/k) if P = 1

}
if f 6= 0 AF

Γ =

{
O(k) if P = 0

O(1) if P = 1

}
if f = 0 as k → 0

AF
Γ =

{
O(k) if P = 0

O(1) if P = 1

}
if F 6= 0 AF

Γ =

{
O(1) if P = 0

O(1/k) if P = 1

}
if F = 0 as k → ∞

These asymptotic approximations show that the amplitude functions AF
B ,AF

0 and AF
Γ for P = 0 are

smaller than the corresponding amplitude functions for P = 1 in the limit k → 0 , and that the reverse
holds in the limit k → ∞ . Thus, the functions (47a) and (47b), which correspond to the classical and
weakly-singular potential representations, are preferable in the limits k → 0 and k → ∞ , respectively.
This property agrees with the previously-established property that the classical and weakly-singular
potential representations are better suited in the farfield and the nearfield, respectively, since the farfield
and nearfield behavior of a function is determined by the behavior of its Fourier transform in the limits
k → 0 and k → ∞ , respectively.

Substitution of the weight function
P = k2/(k2+k2

∗) (48)



where the positive real number k∗ stands for a transition wavenumber, into (46) yields

(AF
B , AF

0 ,AF
Γ ) =

k k∗

k2+k2
∗

(aF
B , aF

0 , aF
Γ ) with (49a)

aF
B =

β

k∗
(n×∇φ)x− α

k∗
(n×∇φ)y −

(
α

k
nx+

β

k
ny− i nz

)
k∗ φ (49b)

aF
0 =

α

k∗
φx +

β

k∗
φy − i k∗φ (49c)

aF
Γ =

f2φ

k∗

(
α

k
ty − β

k
tx

)
+

τ̂ −F 2α

k

(
k∗ tyφ + i

β

k∗
t ·∇φ

)
(49d)

Expressions (49) are identical to (47a) and (47b) in the limits k∗ = ∞ and k∗ = 0 , and are asymptoti-
cally equivalent to (47a) and (47b) in the limits k/k∗ → 0 and k/k∗ → ∞ , respectively.

13. Wave potential φ̃W

The Fourier-Kochin representation (45a) is a singular double Fourier integral, a major difficulty.

This basic difficulty is circumvented in the Fourier-Kochin representation of the wave component φ̃W in
(38), which is given by three nonsingular single (one-fold) Fourier integrals as shown below. As already

noted, the wave potential φ̃W is related to the Green function

4πG = GR + iGW = GR + i (W+− W−− W i) (50a)

where GR represents a local-flow component given by four elementary Rankine sources, and the three
components W± and W i represent distinct wave systems generated by a pulsating source advancing at
constant speed. Substitution of the Green function (50a) into the potential representation (35) yields

4π φ̃ = φ̃R+ i φ̃W = φ̃R + i (φ̃+ − φ̃− − φ̃ i ) (50b)

For deep water and in the farfield — now considered — the wave components W± and W i in (50a)
are given by single Fourier integrals of the form

W = Λ

∫ T

−T

dt Ω Θ0 eZ∗ k − i (X α +Y β ) with Θ0 = 1+ ε sign(Xα +Y β) (51)

X,Y and Z∗ are defined by (2) and (23). Furthermore, Λ = Λ(f, F ) is a function of f and F , the
limit of integration T is equal to ∞ , π , or a function of τ (thus, T is independent of X, Y, Z∗), the
amplitude function Ω = Ω(t ; τ) is a function of t and τ , ε = ±1 , and the Fourier variables α and β
and the related wavenumber k are functions of f, F and t . The factor Λ , the limit of integration T ,
the amplitude function Ω , the value of ε , and the functions α , β and k are given in Noblesse and Yang
(2004b) for each of the three wave components W± and W i in (50a). In the nearfield, the sign function
sign(Xα +Y β) in (50a) is replaced by a function Θ , given in Noblesse and Yang (2004b).

The wave potentials φ̃± and φ̃ i in (50b) are given by (35) and (36), with G replaced by W± and

W i, respectively. The Fourier-Kochin approach, already used for the Fourier component φ̃F, can be
used again to express the wave potentials φ̃± and φ̃ i in (50b) as single Fourier integrals (along the
dispersion curves defined by the dispersion relation D = 0) that involve the spectrum function (45b) at

the dispersion curves D = 0 . Thus, in the farfield, the wave potentials φ̃± and φ̃ i are given by

φ+/−/i
∞ = Λ

∫ T

−T

dt Ω SW
∞ e z̃ k − i ( x̃ α + ỹ β ) (52a)

where SW
∞ stands for the farfield wave spectrum function

SW
∞ =

∫

ΣB

dAΘ0 (n ·∇φ + iAF
B ) e k zE −

∫

Σ0

dx dy Θ0 πφE +

∫

Γ

dL Θ0 (F 2 tyφx + iAF
Γ )E (52b)

with E and πφ defined by (45c) and (32a), respectively. If expression (48) for the weight function P is
used, the functions AF

B and AF
Γ are given by (49a), (49b) and (49d). These expressions yield

AF
B = −(αnx+ βny− i knz )φ AF

Γ = (τ̂ −F 2α) tyφ (52c)

AF
B =

β

k
(n×∇φ)x− α

k
(n×∇φ)y AF

Γ =
f2φ

k

(
α

k
ty − β

k
tx

)
+ i

β

k

τ̂ −F 2α

k
t ·∇φ (52d)



in the special cases k∗ = ∞ and k∗ = 0 , in agreement with (47).

14. Optimal wave spectrum functions

The farfield wave spectrum function (52b) can be expressed as

SW
∞ = SW

ψ + SW
B + SW

Γ with (53a)

SW
ψ =

∫

ΣB

dAΘ0 (n ·∇φ) e k zE −
∫

Σ0

dx dy Θ0 πφE (53b)

SW
B = i

∫

ΣB

dA Θ0 AF
B e k zE SW

Γ =

∫

Γ

dL Θ0 (F 2 tyφx + iAF
Γ )E (53c)

The component SW
ψ , associated with the normal flux n·∇φ at the body surface ΣB and the pressure/flux

distribution πφ at the free surface Σ0 in (52b), does not involve the transition wavenumber k∗ . The
components SW

Γ and SW
B are functions of k∗ , and represent the contributions of the line integral along

Γ and of the term AF
B in the surface integral over ΣB , respectively. Specifically, (49a), (49b) and (49d)

show that the amplitude functions in the integrands of the integrals defined by (53c) are of the form

k k∗
k2+k2

∗

(
P

k∗
+ Qk∗

)
+ R = k

P−k2Q

k2+k2
∗

+ kQ + R

where P ,Q and R do not involve k∗ . The derivative of the foregoing function with respect to k∗ is

−2k (P−k2Q)k∗/(k2+k2
∗)

2

The derivatives of the functions SW
B and SW

Γ with respect to k∗ therefore vanish for both k∗ = 0 and
k∗ = ∞ . Thus, the components SW

B and SW
Γ are largest or smallest for k∗ = 0 or k∗ = ∞ , and numerical

cancellations between these two components likewise are largest or smallest if k∗ = 0 or k∗ = ∞ . In
this sense, the optimal representation of the farfield wave spectrum function SW

∞ in (52a) is given by
(52b) with either (52c) or (52d). These two alternative expressions correspond to k∗ = ∞ or k∗ = 0 ,
i.e. to the classical potential representation (3) or the weakly-singular representation (8), respectively.

In the particular case F = 0 , i.e. for wave diffraction-radiation without forward speed, (52c) yields
AF

Γ = 0 , and the line integral SW
Γ defined by (53c) is null. Thus, no numerical cancellation can occur

between the components SW
Γ and SW

B in (53a) if k∗ = ∞ ; and the classical representation (52c) is in
this sense preferable in the particular case F = 0 . In the particular case f = 0 , i.e. for steady flow, the
dispersion curve D = 0 , defined by (44b) as F 2α2 = k , yields α =

√
k/F and β ∼ k as k → ∞ . In the

limit k → ∞ , the alternative amplitude functions AF
B defined by (52c) and (52d) therefore are O(k)

and O(1) , respectively, and the related alternative amplitude functions F 2 tyφx + iAF
Γ are O(

√
k ) and

O(1) , respectively. The components SW
B and SW

Γ in (53a) can then be expected to be significantly larger
for (52c) than for (52d) as k → ∞ , as can in fact be observed in the numerical example considered in
Noblesse and Yang (2004a). Thus, significantly larger numerical cancellations between the contributions
of the body surface ΣB and the curve Γ can be expected for the classical representation (52c) than for
the weakly-singular representation (52d), which thus is preferable for the particular case f = 0 .

For the general case Ff 6= 0 , i.e. for wave diffraction-radiation with forward speed, the wave potentials
φ̃ i and φ̃± in (50b) are associated with the inner and outer dispersion curves I and O±, respectively,
defined in Noblesse and Yang (2004b). The wavenumber k and the related Fourier variables α and β
are bounded for the inner dispersion curve I but are unbounded for the outer dispersion curves O±.
Specifically, we have k ≤ f/F and f/F ≤ k for the inner dispersion curve I and the outer dispersion
curves O±, respectively. Thus, the classical representation (52c) and the weakly-singular representation

(52d) can be expected to be preferable for the wave potentials φ̃ i and φ̃±, respectively, in (50b).

15. Conclusion

The classical potential representation (3) and the weakly-singular representation (8) are best suited
in the farfield and the nearfield, respectively. This property is clearly apparent if the Green function
G in (3) and (8) is chosen as the fundamental free-space Rankine source given by 4πG = −1/r , for
which the alternative potential representations (3) and (8) become (18a) and (18b). Specifically, the



O(1/r2) dipole term in the classical potential representation (18a) decays rapidly in the farfield but is
strongly singular in the nearfield, whereas the corresponding O(1/r) term in the alternative potential
representation (18b) is weakly singular in the nearfield but decays slowly in the farfield. Thus, the
classical potential representation (3) and the weakly-singular representation (8) are complementary.

These alternative basic representations of the potential can be regarded as special cases of the
generalized representation (12). Specifically, the representations (3) and (8) are obtained if the weight
function P in the generalized representation (12) is chosen as P = 0 or P = 1 , respectively. If the
Green function G is taken as 4πG = −1/r and the weight function P given by (19) is chosen, the
generalized representation (12) becomes (20). The integrand of the latter representation is identical to
the integrands of (18a) and (18b) in the farfield and nearfield limits r/` → ∞ and r/` → 0 , respectively.
Thus, the generalized representations (20) and (12) are weakly singular — like the weakly-singular

representation (8) — and define a potential φ̃ at a flow-field point x̃ that is continuous at the boundary

surface Σ , whereas the potential φ̃ defined by the classical representation (3) is not continuous at Σ .

The generalized potential representation (12) has been applied to free-surface flows in the infinite-
gravity and zero-gravity limits, and to wave diffraction-radiation by a ship advancing through regular
waves in uniform finite water depth. In the latter case, the generalized potential representation (12)
becomes (35) with (36). This representation does not presume that the potential φ satisfies the linearized
free-surface boundary condition πφ = 0 . Indeed, the free-surface flux πφ in (35), given by (32a), can
account for nearfield effects associated with linearization about a base flow (e.g. double-body flow or
steady free-surface flow) that differs from the uniform stream opposing the ship speed (for which πφ = 0).

The potential representation (35) defines the potential φ̃ for wave diffraction-radiation with forward
speed in terms of boundary distributions over the body (ship hull) surface ΣB , the sea floor ΣD , the
free surface Σ0 , and the intersection curve Γ between ΣB and Σ0 . The distribution over the body
surface ΣB involves the potential φ and the velocity components n ·∇φ and n×∇φ , which are normal
and tangent to ΣB . The distribution over the sea floor ΣD involves the potential φ and the tangential
velocity components φx and φy . The distribution over the free surface Σ0 involves the pressure/flux
function πφ given by (32a), the potential φ , and the tangential velocity components φx and φy . Finally,
the distribution around the curve Γ involves the potential φ and the velocity components t ·∇φ and φx ,
where t ·∇φ is the velocity component along the unit vector t tangent to Γ, and the velocity component
φx can be expressed in the form given by (34).

Two alternative Green functions related to the linearized free-surface boundary condition πG = 0
for wave diffraction-radiation with forward speed have been used. One of these two Green functions is
the usual free-surface Green function, which satisfies πG = 0 in both the farfield (where the linear free-
surface condition πG = 0 is valid) and the nearfield, where this linear condition is only an approximation.
The other Green function, given in Noblesse and Yang (2004b), satisfies the linear free-surface condition
πG = 0 accurately in the farfield but only approximately in the nearfield. Use of these two alternative
Green functions, expressed as in (37), in the potential representation (35) yields the corresponding

alternative potential representations (38). These potential representations express the potential φ̃ as

the sum of a local-flow Rankine component φ̃R and a Fourier component φ̃F or a wave component φ̃W .

Use of the simple Green function given in Noblesse and Yang (2004b) leads to the free-surface
function A0 in the potential representation (35). The function A0 , defined by (36b) , is related to the
property that the function πG given by (32b) is not null in the nearfield for the simple Green function,
as already noted (whereas πG and A0 are null if the usual free-surface Green function is used). Thus,
use of the simple Green function given in Noblesse and Yang (2004b), instead of the usual free-surface
Green function, implies no approximation or restriction, but requires the distribution A0 over a nearfield
portion of the free surface Σ0 .

The Rankine component GR in the alternative Green functions (37) is defined in Noblesse and Yang

(2004b) by four elementary free-space Rankine sources. Accordingly, the Rankine potential φ̃R in (38) is
defined by (39) and (43) in terms of distributions of elementary Rankine singularities over the boundary
ΣB ∪ Γ ∪ Σ0 ∪ ΣD . Expressions (43) involve several functions, e.g. (GR)zz

xy and (πR)zz
y , related to the

Rankine component GR of the Green function and the function πR defined by (41). Simple analytical
expressions for these functions are given elsewhere (due to space limitation).



The Fourier-Kochin approach defines the Fourier component φ̃F in (38) as a singular double Fourier
integral that involves a spectrum function S defined by boundary distributions of elementary waves.
For deep water, this Fourier-Kochin representation of φ̃F is given by (45). The amplitude functions in
the spectrum function (45b) are given by (49) for the weight function (48). In the limits k/k∗ → 0
or k/k∗ → ∞ (for small or large wavenumbers), the amplitude functions (49) are identical to the
amplitudes (47a) or (47b) associated with the classical potential representation (3) or the weakly-singular
representation (8), respectively (in accordance with the property that the classical and weakly-singular
potential representations correspond to farfield and nearfield representations, respectively).

The wave component GW in expression (50a) for the simple Green function given in Noblesse and
Yang (2004b) consists of three components W i,W +and W− that represent distinct wave systems created

by a pulsating source advancing at constant speed. The corresponding wave potentials φ̃ i and φ̃± in
the potential representation (50b) are defined by three nonsingular single (one-fold) Fourier integrals
that involve a wave spectrum function given by boundary distributions of elementary waves (45c).

For deep water and in the farfield, this Fourier-Kochin representation of the wave potentials φ̃ i and
φ̃± in (50b) is given by (52). Expressions (52c) and (52d) for the amplitude functions in the farfield wave
spectrum function (52b) correspond to the classical potential representation (3) and the weakly-singular
representation (8), respectively. The alternative expressions (52c) and (52d) can be considered optimal

for the wave potentials φ̃ i and φ̃±, respectively, in that they yield minimal numerical cancellations
between the components SW

Γ and SW
B , associated with the line integral around the curve Γ and the

surface integral over the body surface ΣB , in (53a). In the nearfield, the function Θ0 in expression
(52b) for the farfield wave spectrum function SW

∞ is replaced by a set of functions that are closely

related to the function Θ defined in Noblesse and Yang (2004b). The nearfield wave potentials φ̃ i and

φ̃± are given elsewhere (due to space limitation).

Both the free-surface terms A0 and πφ, given by (36b) and (32a), in the potential representation (35)
vanish in the farfield. Free-surface integration in (35) therefore is only required over a finite nearfield
region of the unbounded free surface Σ0 . Two other (already noted) useful properties of the potential

representation (35) are that it defines a continuous potential φ̃ at the boundary of the flow domain,
and that it does not assume the potential satisfies the usual linearized free-surface boundary condition
πφ = 0 . Furthermore, the potential representation (35) — with the Green function G chosen as the
simple Green function given in Noblesse and Yang (2004b) — yields a potential representation for
wave diffraction-radiation with forward speed that only involves boundary distributions of elementary
free-space Rankine sources and elementary waves (two complementary fundamental solutions of the
Laplace equation), and nonsingular single (one-fold) Fourier integrals. This potential representation is
significantly simpler than the classical representation that has been used previously in the literature.
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